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An algorithm for computing VLBI time delay partial derivatives with respect to param-
eters of the model, the algorithm of parameter estimation is described.

1 Introduction

The method of VLBI first proposed by [Matveenko et al.(1965)] allows to measure precisely the
time delay and its rate of change. The time delay is defined as a difference between two intervals:
a) the interval of proper time measured by clocks of the first station between events: arrival the
wavefront to the reference point of the first antenna and clock synchronization and b) the interval
of proper time measured by clocks of the second station between events: arrival the wavefront to
the reference point of the second antenna and clock synchronization. The post-correlator software
evaluates the time delay and its time derivative to a certain moment of time at time scale TAI
called fringe reference time within the interval of observation, which is typically 20–700 second
long.

In this paper, the algorithm for computing the time delay and delay rate is presented in
chapter 2. The order of narration in this chapter follows the order of derivation of this quantity:
first the expression for the time delay will be derived, then the algorithm for computing of
position of the emitter and receivers in the inertial coordinate system, is described. The motion of
receivers is decomposed into rotation and deformation. Then effects of propagation in refractive
medium are taken into account. Finally, the coupling effects are taken into account.

The chapter 3 follows the order of computing the intermediate quantities which will be finally
substituted in the expression for time delay and delay rate. Description of formats of input files
needed for implementation of calculation is presented in document vtd format.txt .

The truncation level for computation is 10−13 s for delay and 10−16 s/s for delay rate. If the
apriori were perfect the accuracy for time delay computation would be at that level. In practice,
the theoretical path delay can be predicted with the error of 1–10 · 10−9 s.
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2 Algorithm for computation of the theoretical path delay, de-

lay rate and partial derivatives with respect to parameters of

model

2.1 Expression for geometric path delay

Let us have two stations #1 and #2. Reference station #1 receives a radio wave form source
a in time t1 according to its local clock which are assumed synchronized with TAI via GPS.
Remote station #2 receives a radio wave from the emitter e in time t2 according to its clock
which are also assumed synchronized with TAI via GPS. The problem is, knowing position and
velocity of stations #1, #2, and object a, what will be the time t2?

We have three events: emission of the radio wave with coordinates ~Re, Te in a barycentric
coordinate system and two events of receiving that radio wave at stations #1 and #2 with
coordinates ~r1, t1, ~r2, t2 in a geocentric coordinate system.

The post Newtonian metric in these coordinates can be written this way:

G00 = 1 − 2
U

c2 + 2ÃLb + O(1/c4)

G0k = O(1/c3)

Gmn = −δmn

(

1 + 2
U

c2 − 2ÃLb

)

+ O(1/c4)

(1)

g00 = 1 − 2
U⊕

c2 + 2ÃLg + O(1/c4)

g0k = O(1/c3)

gmn = −δmn

(

1 + 2
U⊕

c2 − 2ÃLg

)

+ O(1/c4)

(2)

for the barycentric and geocentric coordinate systems respectively. Here U is the sum of the
gravitational potential of all external bodies in the geocenter, U⊕ — geopotential, Lb and Lg are
some arbitrary scaling constants. Their numerical values depends on a convention. Parameters
Lb and Lg were introduced into the expression for the metric artificially. Equations of general
relativity allows scaling transformation. When the coordinate system is defined, 7 parameters
should be specified: three parameters of the origin, three parameters of orientation, and the
scaling parameter. In physics usually Lb = Lg = 0. That implies that in the infinity the metric
tensor becomes the Minkowsky tensor. In geodesy various values for Lb and Lg were used:

• TDB baricenteric coordinate system, Lb =
fM⊙

R̄⊙ c2 = 1.48082686741 · 10−8, Lg = 0;

• ITRF2000 (or IERS1992) geocentric coordinate system, Lb = 0; Lg = 6.969290134 · 10−10 ≈
fM⊕

R̄⊕c2 +
2

3c2 Ω2
⊕R⊕;

• IAU2000 baricenteric coordinate system, Lb = Lg = 0.

• IERS1996 geocentric coordinate system, Lb = 0; Lg = − fM⊕

R̄⊕ c2 = −6.969290134 · 10−10 ≈

−fM⊕

R̄⊕c2 − 2

3c2 Ω2
⊕R⊕;
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where Ω⊕ is the nominal Earth’s angular velocity.
Since coordinates of the emitter are represented in the barycentric coordinate system, let us

first compute time delay as the difference of barycentric time coordinates and then transform it
to the difference of intervals of proper time which are related to quantities derived from analysis
of VLBI fringe phases.

First, transform coordinates ~r1, t1, ~r2, t2 from the geocentric to the barycentric coordinate
system. Using expression for metric (1), (2) we find

~R1(T1) =

(
1 −

(U⊙

c2 − Lb

))
~r1 −

1

2c2 (~V⊕
~R⊕) ~V⊕

~R2(T1) =

(
1 −

(U⊙

c2 − Lb

))
~r2 −

1

2c2 (~V⊕
~R⊕) ~V⊕

T1 = t1 +
1

c2 ~r1
~V⊕ +

1

c2

t∫

t0

(
1

2
v2 + U

)
dt + 32.184 (3)

Here we retain only contribution of the gravitational potential of the Sun.
The barycentric travel time of the signal from the emitter a to station #1 and to station #2

are

T1 − Te =
1

c

∣∣∣∣~Re(Te) − ~R1(T1)

∣∣∣∣ + T1,grav

T2 − Te =
1

c

∣∣∣∣~Re(Te) − ~R2(T2)

∣∣∣∣ + T2,grav

Ti,grav =
∑

k

2fMk

c3

(
1 +

1

c
~̇Rk(T

′
e)

~S(Ti, T
′
e)

)
ln

(
|~Re(Te) − ~Rk(T

′
e)| + (~Re(Te) − ~Rk(T

′
e))

~S(Ti, T
′
e)

)
−

(
1 +

1

c
~̇Rk(T

′
k)

~S(Ti, T
′
e)

)
ln

(
|~Ri(Ti) − ~Rk(T

′
e)| + (~Ri(Ti) − ~Rk(T

′
e))

~S(Ti, T
′
e)

)

(4)

where f is the universal gravitational constant, Mk is the mass of the gravitating body,
summation is done over all big planets of the Solar system, excluding the Pluto, but including
the Moon. Position of the gravitating body in (4) is taken in the retarded moment of barycentric
time T ′

k which is a solution of the gravitation null-cone equation:

T ′
k = T1 −

1

c

∣∣∣∣~R1(T1) − ~Rk(T
′
k)

∣∣∣∣ (5)

Retarded moment of emission T ′
e is a solution of a similar gravitation null-cone equation:

T ′
e = T1 −

1

c

∣∣∣∣~R1(T1) − ~Rk(T
′
e)

∣∣∣∣ (6)

The vector towards the source ~S(Ti, Te) is

~S(Ti, T
′
e) =

~Ri(Ti) − ~Re(T
′
e)

|~Ri(Ti) − ~Re(T
′
e)|

(7)
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Derivation of expression (4) was made by many authors. At present, one of the most com-
prehensive papers is the article of [Kopeikin and Shaeffer, 1999]. For solving equations (4) two
cases should be considered separately, when the object is in the far zone, i.e. we can consider
the wavefront flat, and the case one cannot neglect wavelength curvature. This happens when
the diurnal parallax of the object exceeds the error of delay computation, στ/|τ |, 10−11 in our
case. This is true for the objects within the Solar System.

2.1.1 VLBI time delay for a far zone object

In the case, when
|Ri|
|Re|

< στ/|τ | expression for gravitational excess delay (4) τgrav = T1,grav −
T2,grav is reduced to

τgrav = 2
∑

k=1

f Mk

c3

(

1 +
1

c
~̇Rk(T

′
1k) · ~S

)

ln
|~Rk(T

′
k) − ~R1| + ~S · (~Rk(T

′
k) − ~R1)

|~Rk(T
′
k) − ~R2| + ~S · (~Rk(T

′
k) − ~R2)

(8)

Implicit equation for time delay (4) can be simplified using by expanding it in series. For
any vector ~A and ~b such that |~b| ≪ |~A| the module of their difference |~A− ~b| can be expressed
as

|~A − ~b| = |A| + ~a · ~b + O

(
b2

|A|

)
(9)

where ~a =
A

|A| . Then the difference of barycentric time coordinates can be written as

T2 − T1 =
1

c

(
~R1(T1) − ~R2(T2)

)
~S + τgrav + τp (10)

where τp is an additional delay which takes into account extra delay caused by the propagation
media.

After expansion ~R2(T2) near instant T2 as

~R2(T2) = ~R2(T1) + ~̇R2(T1)(T2 − T1) + O( ~̈R2(T2 − T1)
2) (11)

we have

T2 − T1 =
1

c

(
R1(T1) − R2(T2)

)
· ~S + τgrav + τp

1 +
1

c
~̇R2(T1) · ~S

(12)

Now we should relate baricenteric vectors of site positions with geocentric vector coordinate
and transform the difference of baricenteric time coordinates T2 − T1 to the difference of inter-
vals of proper time between events of coming the wavefront to stations #1 and #2 and clock
syncrhonization. The differences of barycentric time coordinates T1 − Tsync and T2 − Tsync are
first to transformed to geocentric coordinate system, then these differences of geocentric time
coordinates are transformed to intervals of proper time.

Term
1

c2

∫ (
1

2
v2 + U

)
dt in 3 deserves special consideration. This sum of centrifugal

and gravitational potential describes the difference in clock rate at a station with respect to
the geocentric time. First, notice, time as measured by station clock synchronized in TAI
or TT1. TAI cooresponds to proper time of a hypotetical clock on the geoid. For a sta-

1TT - TAI = 32.184
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tion that has the height above the geoid, so-called orthometric height, this term is reduced

− 1

c2

∫ (
2

3
Ω2
⊕R⊕ cos2 ϕ + gloc

)
hort dt, where gloc is the local gravity acceleration. Neglecting

site position variations due to tides and mass loading, the expression under integral is constant.
Integration will give a linear trend and an arbitrary integration constant. The value of the
constant corresponds to clock syncrhonization that occurs before the experiment start.

Finally, we get the following expression for time delay in the far zone:

(
(t2p − tsync) − (t1p − tsync)

)
(t1) =

1

1 +
1

c
(~V⊕ + ~̇r2) · ~S

(
1

c
(~r1(t1) −~r2(t1)) · ~S

[
1 −

(
2

fM⊙

|~R⊕|c2 − Lb

)
−

(
U⊕

c2 − Lg

)
− |~V⊕|2

2c2 −

~V⊕ · ~̇r2

c2

]
+

1

c2
~V⊕ · (~r1(t1) −~r2(t1))

(
1 +

1

2c
~V⊕ · ~S

)
− 1

c
ρ (~r1(t1) −~r2(t1))

~R⊕

D̄⊕
+ τgrav + τp

)

−

1

c2

(

gloc,2 hort,2 − gloc,1 hort,1 +
2

3
R⊕Ω2

⊕ (cos2 ϕgc,2 hort,2 − cos2 ϕgc,1 hort,1)

)

· (t1p − tsync)

(13)

where ρ is the annual parallax of the observed source, ϕ is geocentric latitude, and D̄⊕ is the
mean distance between the barycenter of the Solar System and the barycenter the system Earth–
Moon (astronomical unit). We can neglect dependence of the gravitational potential on height

for ground stations and compute it as U⊕ =
fM⊕

|r⊕|
and omite v2

2/c2 for ground stations.

The time delay is itself a function of time. The argument of its time dependence is the
geocentric time t1 of the event of wavefront coming to reference station #1. Differentiating this
expression with respect to time and discarding terms which are less than 10−16, we get

∂

∂t

(
(t2p − tsync) − (t1p − tsync)

)
(t1) =

1

1 +
1

c
(~V⊕ + ~̇r2) · ~S

(
1

c
(~̇r1 − ~̇r2) · ~S

[
1 −

(
2

fM⊙

|~R⊕|c2 − Lb

)
−

(
U⊕

c2 − Lg

)
− |~V⊕|2

2c2 −
~V⊕ · ~̇r2

c2

]
+

1

c2

(
~̇V⊕ · (~r1 −~r2) + ~V⊕ · (~̇r1 − ~̇r2)

) (
1 +

1

2c
~V⊕ · ~S

)
− 1

c
ρ (~̇r1 − ~̇r2)

~R⊕

D̄⊕
+ ∂

∂tτgrav + ∂
∂tτp

)

−

1

c

( ~̇V⊕ + ~̈r2) · ~S(

1 +
1

c
(~V⊕ + ~̇r2) · ~S

)2

(
1

c
(~r1 −~r2) · ~S +

1

c2
~V⊕ · (~r1 −~r2) +

1

c
ρ (~r1 −~r2)

~R⊕

D̄⊕
+ τgrav + τp

)

−

1

c2

(

gloc,2 hort,2 − gloc,1 hort,1 +
2

3
R⊕Ω2

⊕ (cos2 ϕ2 hort,2 − cos2 ϕ1 hort,1)

)

(14)
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and

∂

∂t
τgrav = 2

∑

k=1

f Mk

c3

(
1 + ~S · ~̈Rk(T

′
1k)

)
ln

|~Rk(T
′
k) − ~R1| + ~S · (~Rk(T

′
k) − ~R1)

|~Rk(T
′
k) − ~R2| + ~S · (~Rk(T

′
k) − ~R2)

+

2
∑

k=1

f Mk

c3

(
1 + ~S · ~̇Rk(T

′
1k)

)
·





−
~̇Rk(T

′
k) · ~R1 + ~Rk(T

′
k) · ~̇R1

|~Rk(T
′
k) − ~R1|

+ ( ~̇Rk(T
′
k) − ~̇R1) · ~S

|~Rk(T
′
k) − ~R1| + (~Rk(T

′
k) − ~R1) · ~S

−

−
~̇Rk(T

′
k) · ~R2 + ~Rk(T

′
k) · ~̇R2

|~Rk(T
′
k) − ~R2|

+ ( ~̇Rk(T
′
k) − ~̇R2) · ~S

|~Rk(T
′
k) − ~R2| + (~Rk(T

′
k) − ~R2) · ~S





(15)

In practice, the last term, linear in time for time delay and constant for delay rate is usually
ignored since it is not distingioshable from the Hydrogen clock frequency offset. This term is
solved for during post-processing dat aanalysis.

2.1.2 VLBI time delay when one of antenna is at the Earth’s orbit

One of the elements of the radiointerferometer may be at the Earth’s orbit. Equations for
time delay and its time derivatives 13–15 remain valid for this case, except the last term that
accounts for difference in clock rate. The satellite orbit should be transformed to the geocentric
coordinate system with the same expression for metric as for coordinates of ground stations
before computations.

In the case if the orbiting station has the clock that preserves its count through the entire
experiment, the path delay is computed the same way as for the baseline between ground stations,
except the fact that the ground and the orbiting station have different model of their motion.

The orbiting station may or may not have a continuous time counter. For instance, Radioas-
tron has its on-board Hydrogen maser clock that feeds both the receiver and the sampler, but
the sample counter is implicitly reset at the beginning of each scan (Y. Kovalev (2012), private
communication). The reading of the clock of the ground downlink station is written in the time
tag field in the scan header of data record of the orbiting telescope. It should be stressed that
the delay is still determined as a difference of intervals proper time between events of coming
the wavefront to the station and clock synchronization measured with station clocks for both
ground station and orbiting station. It is the on-board clock that generates the rail of samples
and send the digitized samples down to the Earth. The interval of time of each sample relative
to the first sample of a scan is the proper time of the on-board clock.

Clock synchronization usually done only once per experiment for ground stations. For the
orbiting station without a continuous time counter, clock synchronization is done at the begin-
ning of each scan. The difference between the time coordinate at the orbiting station ts and
the time coordinate at the downlink station td for the observer at the downlink station can be
found by solving the light-cone equation

ts − td =
1

c
|~rs(td + (ts − td)) −~rd| (16)
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where ~rd is the position of the downlink station in the geocentric coordinate system and ~rs is
the position of the satellite in the geocentric coordinate system according to its ephemeride.

This equation is solved by iterations. Then the time tag of the first sample of a scan from the
orbiting telescope is td − (ts − td). For ground station the a priori clock model is computed from
results of clock synchronization before and after experiment. The difference between the sampler
clock minus TAI is approximated with a liner function and subtracted from the geometric path
delay. For the orbiting station without a continuous time counter, clock of the downlink station
is synchronized against TAI using the same way as for other ground stations. Then the delay
between the orbiting and the downlink station, ts − td, considered constant for each scan, is
added to the geometric delay. This difference represents the clock synchronization errors and is
constant for every sample of a scan. For the next scan a new difference ts − td is computed for
the time of recording the first sample.

In the case if the second station of a baseline is on the orbit, τ ~v2
2/c2 is not negligible and

U⊕ cannot be computed as
fM⊕

R⊕
in expression 13–14. We need to add the following terms τa

and
∂

∂t
τa to expressions 13–14:

τa = − ~v2
2

2c2 (~r1 −~r2) · ~S +
fM⊕

c2

(
1

|~r2|
− 1

R⊕

)
~r2 · ~S

∂

∂t
τa = − ~v2

2

2c2 (~̇r1 − ~̇r2) · ~S +
fM⊕

c2

(
1

|~r2|
− 1

R⊕

)
~̇r2 · ~S

(17)

In the case if the first station of a baseline is on the orbit, corrections τb and
∂

∂t
τb should be

added to expressions 13–14:

τb = −fM⊕

c2

(
1

|~r1|
− 1

R⊕

)
~r1 · ~S

∂

∂t
τb = −fM⊕

c2

(
1

|~r1|
− 1

R⊕

)
~̇r1 · ~S

(18)

In a case of a ground station term
1

c2

∫ (
1

2
v2 + U

)
dt is reduced to a small linear function

with rate approximately 10−16 · hort. Since velocity and distance to the spacecraft is changing
during experiment, this term cannot be reduced. Instead, we have to integrate this expression

∆t =
1

c2

ts,obs∫

ts,sync

(
1

2
ṙ2
s(t) +

fM⊕

|rs(t)|
−

fM⊕

R⊕
−

2

3
Ω2
⊕R2

⊕ + fMmoon

(
1

|rs(t)|
−

1

|R⊕|

))
dt (19)

using satellite ephemerides. I emphasize here in the lower and upper limits that the time
coordinate at the orbiting satellite should be used that is related to downlink station time td via
expression 16.

For observations with the orbiting station that does not have a sample counter, clock syn-
chronization occurs at the nominal start time. Term ∆t is either added if the orbiting station
is a reference station #1 or subtracted if the orbiting station is a remote station #2.
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2.1.3 VLBI time delay for a near zone object

If the object is in the near zone, then the most straightforward way of solving equations (4)
is the method of consecutive iterations. At the first iteration we set the the right-hand side
Tap := T1, T ′p

k := T1 and T2p := T2. Then

Te := Tap − 1

c

∣∣∣∣~Re(Tap) − ~R1(T1)

∣∣∣∣ − T p
grav1

T ′
k := T1 −

1

c

∣∣∣∣~R1(T1) − ~Rk(T
′p
k )

∣∣∣∣

T p
grav1

=
∑

k

2fMk

c3 log

∣∣∣∣∣
|~Rk(T

′p
k ) − ~Re(Tap)| + |~Rk(T

′p
k ) − ~R1(T1)| + |~Re(Te) − ~R1(T1)|

|~Rk(T
′p
k ) − ~Re(Tap)| + |~Rk(T

′p
k ) − ~R1(T1)| − |~Re(Te) − ~R1(T1)|

∣∣∣∣∣

T p
grav2

=
∑

k

2fMk

c3 log

∣∣∣∣∣
|~Rk(T

′p
k ) − ~Re(Tap)| + |~Rk(T

′p
k ) − ~R2(T2)| + |~Re(Te) − ~R2(T2)|

|~Rk(T
′p
k ) − ~Re(Tap)| + |~Rk(T

′p
k ) − ~R2(T2)| − |~Re(Te) − ~R2(T2)|

∣∣∣∣∣

T2 := Te +
1

c

∣∣∣∣~Re(Te) − ~R2(T2p)

∣∣∣∣ + Tgrav2

(20)

Without a non-negligible loss of accuracy we can compute ~Rk(T
′p
k ) and ~R2(T2p) as

~Rk(T
′p
k ) = ~Rk(T1) + ~̇R(T1) (T ′p

k − T1)

~R2(T2p) = ~R2(T2) + ~̇R(T2) (T2p − T2) (21)

where ~Rk(T1) and ~R2(T2) are computed from geocentric station coordinates using equations 3.
In general, we have to use the ephemerides of the emitter at each step of iteration in order

to get its precise position at a new moment of time.
There is a special case which should be handled separately: when of the receivers is located

in the geocenter, the expression for metric (1)–(2) is not valid and if used formally, a singularity
occurs. It should be noted that modeling of the receiver in the geocenter does not a physical
meaning, and this delay occurs only in intermediate computations. Therefore, it can be set to
an arbitrary value. It is set to zero in the present algorithm.

The barycentric delay is formulated as a difference of barycentric time coordinates of events
of emittance the radio wave and its receiving. However, we should remember that coordinates
are not measurable quantities. They should be transformed to intervals of proper time. The
VLBI time delay which emerges in analysis of fringe phases is defined as the difference of two
intervals of proper time: 1) the interval of proper time of station #2 between events: coming the
wave front to the reference point on the moving axis and clock synchronization; 2) the interval
of proper time of station #1 between events: coming the wave front to the reference point on the
moving axis and clock synchronization. The time delay is referred to the moment of coming the
wave front to the reference point on the moving axis of the first antenna at time measured by the
time-scale TAI. The reference point of the station for which modeling is done is defined as the
point on the moving axis which has the minimal distance to the fixed axis. In the case if axes
intersect, this is the point of their intersection. The differences of barycentric time coordinates
T1 − Tsync and T2 − Tsync are first to transformed to geocentric coordinate system, then these
differences of geocentric time coordinates are transformed to intervals of proper time using this
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expression which follows from (1)–(2):

(t2p − tsync) − (t1p − tsync) =

(
1 −

(U⊙

c2 − Lb +
V 2

⊕

2 c2

)
−

(U⊕

c2 − Lg +
v1

2
⊕

2 c2

))
(T2 − T1) +

(~r1(t1) −~r2(t2)) ~V⊕

c2 + a + b (t1 − tsync) (22)

where a and b are some quantities. Their value is irrelevant, since they cannot be distinguished
from errors of clock model.

2.2 Computation of station position vector in geocentric inertial coordinate

system

Time delay depends on the baricenteric position vector of the emitter and the geocentric position
vector in the inertial coordinate system. The geocentric system is considered kinematicly non-
rotating with respect to the barycentric coordinate system and therefore, can be labeled as a
“celestial coordinate system”. When we describe site position, it is convenient to relate it to the
Earth crust fixed coordinate system, because in that system the motion of the antenna reference
point is slow. This coordinate system is labeled as a “terrestrial coordinate system”. The
transformation of the position vector from the terrestrial coordinate ~rt system to the celestial
coordinate system ~rc can be represented as

~rc = M̂(t)~rt + ~q(t) ×~rt + ~dt(t) (23)

where M̂ is the apriori rotation matrix, ~q — the small vector of perturbing rotation, ~dt —
the vector of site motion the terrestrial coordinate system. The site motion can be decomposed
on 1) secular motion due to plate tectonic; 2) harmonic site position variations caused by a)
solid Earth tides; b) ocean loading; c) atmospheric pressure loading; d) hydrology loading; e)
empirical deformations; 3) motion of the antenna reference due to antenna slewing.

2.2.1 Reduction for the Earth’s rotation

Decomposition of the Earth rotation into the vector of small perturbing rotation ~q(t) and the

matrix of finite rotation M̂ is not unique, and there are different ways to perform it. The
rotation vector ~q(t) is small in the sense that one can neglect squares of its components.

Three combinations of ~q(t) and M̂ are considered:

• Newcomb-Andoyer formalism

~q = 0

M̂= R̂3(ζ0) · R̂2(θ0) · R̂3(z) · R̂1(−ε0) · R̂3(∆ψ) · R̂1(ε0 + ∆ε) · R̂3(−S) · R̂2(Xp)R̂1(Yp)
(24)

• Ginot-Capitaine formalism:

~q = 0

M̂= R̂3(−E) · R̂2(−d) · R̂3(E) · R̂3(s) · R̂3(−θ) · R̂3(−s′) · R̂1(Yp) · R̂2(Xp)
(25)
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• Empirical Earth Rotation Model (EERM):

~q(t) =





n−1∑

k=1−m

f1k Bm
k (t) +

N∑

j

(
P c

j cos ωm t + P s
j sin ωj t

)

+ t
(
Sc

j cos−Ωn t + Ss
j sin−Ωn t

)

n−1∑

k=1−m

f2k Bm
k (t) +

N∑

j

(
P c

j sinωj t − P s
j cos ωj t

)

+ t
(
Sc

j sin−Ωn t − Ss
j cos−Ωn t

)

n−1∑

k=1−m

f3k Bm
k (t) +

N∑

j

(
Ec

j cos ωj t + Es
j sinωj t

)





(26)

M̂ = R̂3(ζ0) · R̂2(θ0) · R̂3(z) · R̂1(−ε0) · R̂3(∆ψe) · R̂1(ε0 + ∆εe) · R̂3(−S)

All three approaches provide the same transformation with the same accuracy. Only two
formalisms Newcomb-Andoyer and the EERM approaches are considered here.

Parameters of the Newcomb-Andoyer formalism:

ζ0 = ζ01 t + ζ02 t2 + ζ03 t3

θ0 = θ01 t + θ02 t2 + θ03 t3

z = z1 t + z2 t2 + z3 t3

ε0 = ε00 + ε01 t + ε02 t2

∆ψ =
l∑

i

(
(Ψpro

i + Ψ′pro
i TJ) sin

( m∑

j

kjiaj(TJ)
)
+

(Ψret
i + Ψ′ret

i TJ) cos
( m∑

j

kjiaj(TJ)
))

+ Ψ0 + Ψ̇0TJ + δψgeod

∆ε =
l∑

i

(
(Epro

pi + E′
pi

pro
TJ) cos

( m∑

j

kjiaj(TJ)
)
+

(Eret
pi + E′

pi
retTJ) sin

( m∑

j

kjiaj(TJ)
))

+ Ep0 + Ėp0TJ + δεgeod

S = S0 + (Ωn + ζ01 + z1) t + (ζ02 + z2) t2 + (ζ03 + z3 −
1

6
θ2) t3

−(ζ01 + z1)

t∫

to

∆ε(t) dt − sin εo

t∫

to

∆ψ′(t)∆ε(t) dt

+∆ψ cos ε0 + κUT1(t) + As + Bs t

(27)

aj are so-called fundamental arguments represented by lower degree polynomials, The last
two ad hoc spurious terms may be included for no particular reason. The geodesic nutation
δψgeod, δεgeod, is represented in the form of expansion

δψgeod =
i=6∑

i=1

−Ang sin(ϕi + (fi + Ωn + z1 + ζ01 + Ψ̇0) t)

δεgeod =
i=6∑

i=1

Ang cos(ϕi + (fi + Ωn + z1 + ζ01 + Ψ̇0) t)

(28)
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The integral of cross precession-nutation and nutation-nutation terms

−
t∫

to

(
(z1 + ζ01)∆ε(t) + ∆ψ′(t)∆ε(t) sin εo

)
dt have the secular and periodic terms. The secular

with term truncated to the 10−12 rad level has a form

BnnTJ =
1

2

l∑

i

m∑

j

kji
∂
∂ta(TJ)Ψpro

i Epro
i sin ε0 TJ (29)

Other periodic terms can be presented in the form

ρ(TJ) = ρc cos(ϕρ + fρTJ) + ρs sin(ϕρ + fρTJ) (30)

To summarize, the matrix of the transformation according to the Newcomb-Andoyer formal-
ism using the MHB2000 semi-empirical nutation expansion depends on

• 9 precession parameters: ζ0i, θ0i, zi;

• 3 parameters of expansion of the angle of inclination of the ecliptic to the equator ε0i;

• 14 × 3 = 42 low degree coefficients of expansion of fundamental arguments over time;

• 14 × 1365 = 19110 integer multipliers kij ;

• 1365Ψpro coefficients of the prograde nutation in longitude;

• 1365Ψ′pro coefficients of the rate of change of the prograde nutation in longitude;

• 1365Ψret coefficients of the retrograde nutation in longitude;

• 1365Ψ′ret coefficients of the rate of change of the retrograde nutation in longitude;

• 1365Epro coefficients of the prograde nutation in obliquity;

• 1365E′pro coefficients of the rate of change of the prograde nutation in obliquity;

• 1365Eret coefficients of the retrograde nutation in obliquity;

• 1365E′ret coefficients of the rate of change of the retrograde nutation in longitude;

• S0 — nominal position angle of the Earth at J2000;

• Ωn — nominal angular velocity of the Earth;

• Bnn — secular term of the nutation-nutation cross-terms;

• 6 × 3 = 18 phases and frequencies, and amplitudes of the geodesic nutation expansion;

• 15 × 4 = 60 phases and frequencies, and amplitudes of periodic nutation-precession and
nutation-nutation cross terms.

• 2 spurious ad hoc terms As and Bs.

• κ — scaling parameter of the UT1 function
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In total, 30168 parameters! In addition to that, three empirical functions UT1(t), Xp(t),
and Yp(t) describes non-predictable part of the transformation. These empirical functions are
typically sampled with a step of 1 day, which requires for describing the Earth’s rotation at the
period of 20 years, 365×3×20 = 21900 terms. The transformation in this form does not account
for the free core nutation, and therefore, has the accuracy not exceeding 10−9, even if empirical
the functions UT1(t), Xp(t), and Yp(t) would have been known with an infinite accuracy.

Parameters of the EERM formalism:

ζ0 = ζ01 t + ζ02 t2

θ0 = θ01 t + θ02 t2

z = z1 t + z2 t2

ε0 = ε00 + ε01 t + ε02 t2

∆ψ =
3∑

j

−nj sin(ϕn
j + ωn

j t + ω̇n
j t2/2) / sin ε0

∆ε =
3∑

j

nj cos(ϕn
j + ωn

j t + ω̇n
j t2/2)

S = S0 + E0 + (Ωn + ζ01 + z1 + E1) t + (ζ02 + z2 + E2) t2+

−(ζ01 + z1)

t∫

to

∆ε(t) dt − sin εo

t∫

to

∆ψ′(t)∆ε(t) dt

+∆ψ cos ε0 +
2∑

i

(Ec
i cos ωe

i t + Es
i sinωe

i t)

(31)

• 6 precession parameters: ζ0i, θ0i, zi;

• 3 parameters of expansion of the angle of inclination of the ecliptic to the equator ε0i;

• 4 × 3 = 12 parameters of expansion of δψ and δε;

• S0 — nominal position angle of the Earth at J2000;

• Ωn — nominal angular velocity of the Earth;

• 3 parameters of E0, E1, E2 of empirical shift, drift and acceleration of the apriori E3 Euler
angle;

• Bnn — secular term of the nutation-nutation cross-terms;

• 5 × 4 = 20 phases and frequencies, and amplitudes of periodic nutation-precession and
nutation-nutation cross terms.

• 3 × 2 = 6 frequencies and the amplitudes a priori terms of the harmonic expansion of the
E3 Euler angle.

In total, 53 parameters. The empirical function ~qe(t) consists of approximately 500 terms of
expansion into the Fourier basis, i.e. 500 × 5 = 2500 parameters and 12100 parameters of
the expansion into the B-spline basis over the 20 year period (20 × 365 × (1 + 2/3) = 12100),
considering the time span for the B-spline basis 3 days for the first two components of the
probating rotation vector ~qe(t) and 1 day for the third component.
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Computation of station velocity and acceleration requires the first and the second time
derivative of vector ~qe and matrix M̂. The first derivative of the matrix M̂ is computed as

∂

∂t
M̂(t) =

̂̇R3(ζ0) · R̂2(θ0) · R̂3(z) · R̂1(−ε0) · R̂3(∆ψ) · R̂1(ε0 + ∆ε) · R̂3(−S) · R̂2(−Xp) · R̂3(Yp) −
R̂3(ζ0) · ̂̇R2(θ0) · R̂3(z) · R̂1(−ε0) · R̂3(∆ψ) · R̂1(ε0 + ∆ε) · R̂3(−S) · R̂2(−Xp) · R̂3(Yp) +

R̂3(ζ0) · R̂2(θ0) · ̂̇R3(z) · R̂1(−ε0) · R̂3(∆ψ) · R̂1(ε0 + ∆ε) · R̂3(−S) · R̂2(−Xp) · R̂3(Yp) −
R̂3(ζ0) · R̂2(θ0) · R̂3(z) · ̂̇R1(−ε0) · R̂3(∆ψ) · R̂1(ε0 + ∆ε) · R̂3(−S) · R̂2(−Xp) · R̂3(Yp) +

R̂3(ζ0) · R̂2(θ0) · R̂3(z) · R̂1(−ε0) · ̂̇R3(∆ψ) · R̂1(ε0 + ∆ε) · R̂3(−S) · R̂2(−Xp) · R̂3(Yp) +

R̂3(ζ0) · R̂2(θ0) · R̂3(z) · R̂1(−ε0) · R̂3(∆ψ) · ̂̇R1(ε0 + ∆ε) · R̂3(−S) · R̂2(−Xp) · R̂3(Yp) +

R̂3(ζ0) · R̂2(θ0) · R̂3(z) · R̂1(−ε0) · R̂3(∆ψ) · R̂1(ε0 + ∆ε) · ̂̇R3(−S) · R̂2(−Xp) · R̂3(Yp) +

R̂3(ζ0) · R̂2(θ0) · R̂3(z) · R̂1(−ε0) · R̂3(∆ψ) · R̂1(ε0 + ∆ε) · R̂3(−S) · ̂̇R2(−Xp) · R̂3(Yp) −
R̂3(ζ0) · R̂2(θ0) · R̂3(z) · R̂1(−ε0) · R̂3(∆ψ) · R̂1(ε0 + ∆ε) · R̂3(−S) · R̂2(−Xp) · ̂̇R3(Yp)

(32)

For computing the second derivative with relative accuracy 10−5 it is sufficient to retain 8 terms:

∂2

∂t2
M̂(t) =

R̂3(ζ0) · R̂2(θ0) · R̂3(z) · R̂1(−ε0) · R̂3(∆ψ) · R̂1(ε0 + ∆ε) · R̂3(−S) · R̂2(−Xp) · ̂̈R3(Yp) −
2

̂̇R3(ζ0) · R̂2(θ0) · R̂3(z) · R̂1(−ε0) · R̂3(∆ψ) · R̂1(ε0 + ∆ε) · ̂̇R3(−S) · R̂2(−Xp) · R̂3(Yp) +

2 R̂3(ζ0) · ̂̇R2(θ0) · R̂3(z) · R̂1(−ε0) · R̂3(∆ψ) · R̂1(ε0 + ∆ε) · ̂̇R3(−S) · R̂2(−Xp) · R̂3(Yp) −
2 R̂3(ζ0) · R̂2(θ0) · ̂̇R3(z) · R̂1(−ε0) · R̂3(∆ψ) · R̂1(ε0 + ∆ε) · ̂̇R3(−S) · R̂2(−Xp) · R̂3(Yp) −
2 R̂3(ζ0) · R̂2(θ0) · R̂3(z) · R̂1(−ε0) · ̂̇R3(∆ψ) · R̂1(ε0 + ∆ε) · ̂̇R3(−S) · R̂2(−Xp) · R̂3(Yp) −
2 R̂3(ζ0) · R̂2(θ0) · R̂3(z) · R̂1(−ε0) · R̂3(∆ψ) · ̂̇R1(ε0 + ∆ε) · ̂̇R3(−S) · R̂2(−Xp) · R̂3(Yp) −
2 R̂3(ζ0) · R̂2(θ0) · R̂3(z) · R̂1(−ε0) · R̂3(∆ψ) · R̂1(ε0 + ∆ε) · ̂̇R3(−S) · ̂̇R2(−Xp) · R̂3(Yp) −
2 R̂3(ζ0) · R̂2(θ0) · R̂3(z) · R̂1(−ε0) · R̂3(∆ψ) · R̂1(ε0 + ∆ε) · ̂̇R3(−S) · R̂2(−Xp) · ̂̇R3(Yp)

(33)

Expression fir the first two derivatives of ~qe is

~̇q(t) =





m
n−1∑

k=1−m

f1k Bm−1
k (t) +

N∑

j

ωj

(
−P c

j sinωj t + P s
j cos ωj t

)

+
(
Sc

j cos−Ωn t + Ss
j sin−Ωn t

)

−t Ωn

(
−Sc

j sin−Ωn t + Ss
j cos−Ωn t

)

m
n−1∑

k=1−m

f2k Bm−1
k (t) +

N∑

j

ωj

(
P c

j cos ωj t + P s
j sin ωj t

)

+
(
Sc

j sin−Ωn t − Ss
j cos−Ωn t

)

−t Ωn

(
Sc

j cos−Ωn t + Ss
j sin−Ωn t

)

m
n−1∑

k=1−m

f3k Bm−1
k (t) +

N∑

j

ωj

(
−Ec

j sinωj t + Es
j cos ωj t

)





(34)
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~̈q(t) =





m (m − 1)
n−1∑

k=1−m

f1k Bm−2
k (t) −

N∑

j

ω2
j

(
−P c

j cos ωj t + P s
j sinωj t

)

m (m − 1)
n−1∑

k=1−m

f2k Bm−2
k (t) −

N∑

j

ω2
j

(
P c

j sinωj t − P s
j cos ωj t

)

m (m − 1)
n−1∑

k=1−m

f3k Bm−1
k (t) −

N∑

j

ω2
j

(
−Ec

j sinωj t + Es
j sinωj t

)





(35)

The parameterization of the Earth rotation according to the Newcomb-Andoyer representation
requires knowledge of empirical functions UT1(t), Xp(t), Yp(t). They are presented in the form
of of time series with equal time spacing. The empirical EOP function used for data reduction
are produced from analysis of observations with applying smoothing, filtering and re-sampling.
Coefficients of the interpolating spline of the 3rd degree are computed using several points around
the date of interest. A strong periodic signal caused by zonal tides affects function UT1(t). In
order to alleviate effect of this signal in interpolation, the contribution of zonal tides to UT1
can be subtracted from the initial UT1(t) series at epochs of nodes, and then computed to the
epoch of observation and added back. The contribution to UT1 caused by zonal tides can be
obtained either from analysis of observations or from a a theory. In both case it is presented in
the form of quasi-harmonic expansion:

∆UT1(t) =
n∑

i

Zci cos(ϕi + ωi t + ω̇i t
2/2) + Zsi sin(ϕi + ωi t + ω̇i t

2/2) (36)

2.3 Reduction for station secular motion

In the most general from, the reduction secular motion of an antenna can be presented in the
form

~rt(t) = ~r0(t) + ~̇r(t) +
n−1∑

k=1−m

Fk Bm
k (t) (37)

where Bm
k is the spline of the m degree. The spline may have multiple nodes and account for

the discontinuity in positions and velocities. The discontinuities may arise from either tectonic
events: earthquakes or volcanic activity or be a result of a human activity, such as rail repairs.
The linear part of the secular motion is caused by the plate tectonic and the isostatic glacial
adjustment. The separation of the motion into linear part and expansion into the B-spline basis
is entirely arbitrary.

2.4 Reduction for the displacement caused by antenna slewing

An antenna has a fixed axis A and a moving axis B (figure 1). In general, these axis do not
intersect. Even if the antenna was designed to have intersecting axes, during the manufacturing
process the moving axis may be shifted at 1–10 mm from the fixed axis. The antenna reference
point f is the point on the fixed axis which is the closest to the moving axis. The antenna
position is referred to that point. The fringe phase is referred to the phase center of the receiver
that is located at the primary or secondary focus of the antenna p. During antenna slewing,
position of the point b on the moving axis that is located at the point the closest of the fixed
axis changes with respect to the reference point, unless the axes are perfectly intersect. We
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Figure 1: Antenna axes

can notice that the vector ~bp is always coincides with the source vector ~S during observation,
therefore, the VLBI path delay for wave propagation from the point p to the point b is constant
and cannot be distinguished from the clock offset. Therefore, we do not need to make reduction
from the point p to the point b. However, we need to perform reduction from the point b to the
point f , i.e., to compute delay for wave propagation from the point b to the point f . We will
achieve it by computing the vector ~fb in the terrestrial coordinate system and adding it to the
a priori station position.

Different types of antenna mountings can be classified according to direction of the unit
vector of the fix antenna ~A

• Azimuthal mounting:

~au =




1
0
0



 (38)

• Horizontal XY-N mounting:

~au =




0
0
1



 (39)

• Horizontal XY-E mounting:

~au =




0
1
0



 (40)

• Equatorial mounting:

~ac =




1
0
0



 (41)
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• Special case of RICHMOND

~au =




cos 39◦03′36′′ · cos−00◦07′12′′

cos 39◦03′36′′ · sin−00◦07′12′′

sin 39◦03′36′′



 (42)

Subscript u means the the vector is in the local topocentric Up-East-North coordinate system.
This can be converted from to the terrestrial coordinate system through this rotation matrix
transformation:

~rt =




cos ϕgeod cos λ − sinλ − sinϕgeod cos λ
cos ϕgeod sinλ cos λ − sinϕgeod sinλ
sin ϕgeod 0 cos ϕgeod



 ~ru (43)

The geodetic latitude ϕgeod is computed according to [Bowring, 1985] equations:

ϕgeod = arctg
r3(1 − f⊕) + (2f⊕ − f2

⊕)R⊕ sin3 µ

rp(1 − f⊕)(rp − (2f⊕ − f2
⊕) cos3 µ)

rp =
√

r2
1 + r2

2

µ = arctg

(
r3

rp

[

(1 − f) +
(2f⊕ − f2

⊕)R⊕

|r|

])

hort = rp cos ϕgeod + r3 sinϕgeod − R⊕

√
1 − (2f⊕ − f2

⊕) sin2 ϕgeod (44)

where f⊕ is the Earth’s figure flattening and e⊕ is its eccentricity.
The vector ~fb is expressed as

~fb = l
~a × [~Sapp × ~a]
∣∣∣~a × [~Sapp × ~a]

∣∣∣
= l

~Sapp − ~a(~Sapp ~a)

|~Sapp − ~a(~Sapp ~a)|
(45)

where l is a parameter called “antenna axis offset”, and ~Sapp is an apparent source vector. The
maximum value of the antenna axis offset may reach 14 meters, therefore, in order to reach
10−13 s accuracy in delay prediction, we need to compute vector ~fb with accuracy 10−5. At this
level of accuracy we should take into account annual aberration and refraction.

The annual aberration shifts the position vector as

~sa =
1

c
~V⊕ −

1

c
(~s ~V⊕)~s (46)

The refractively angle ρ can be computed using this expression [Sovers et al.(1998)]:

ρ =
3.13 · 10−4

tg E
(47)

where E is the source elevation. Reduction for refractively is equivalent to rotation the source
vector at the angle rho in the plane common to the the direction to the zenith and the source
vector. Therefore, the position vector reduced for refraction is ~sρ = cos ρ ~s+sin ρ ~s⊥, where ~s⊥

— the vector in the plane common for the zenith vector an the vector which is perpendicular to
the source vector: ~s⊥ = [~s ×~r3] ×~s, where ~r is the unit vector ~r

|r| .
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Combining expressions 46–47, we get the following expression for the apparent source vector:

~Sapp =
1

c
~V⊕ − 1

c
(~S ~V⊕) ~S+

cos



3.13 · 10−4 ·

√
1 −~r3

~S

~r3
~S



 ~S+

sin



3.13 · 10−4 ·

√
1 −~r3

~S

~r3
~S




(
~r3 − (~r3

~S)~S
)

(48)

Since the source vector in in the inertial coordinate system, other vectors, ~r and ~a should be
transformed into the inertial coordinate system before computation of ~Sapp.

2.5 Reduction for Earth solid tides

2.5.1 Algorithm for the computation of displacements due to solid Earth tide of

the second Degree

[Mathews et al.(1995)] proposed the following formalism for the representation of a displacement
field caused by the solid Earth tides of the second degree:

~dren =
m=2∑

m=0

Φm
2 a2

e

ge

[(
h(0) + h(2)P 0

2

)
Rm

2 + h′ Rm
0 +

(
l(0) + l(2)P 0

2

)
Sm

2 + l(1)P 0
1 Tm

2 + l′ Tm
1

]
(49)

where Φm
2 is the tidal potential of the second degree and R, S, T denote radial, transverse

spheroidal and toroidal vector harmonic fields:

Rm
ℓ = ~r Y m

ℓ Sm
ℓ = r∇Y m

ℓ Tm
ℓ = i ~r ×∇Y m

ℓ (50)

here ~r is a unit station coordinate vector, Y m
ℓ is a spherical harmonic function of degree ℓ and

order m normalized over the unit sphere, ae is the Earth’s equatorial radius, ge is the gravity
acceleration at the equator, Pm

ℓ is a Legendre function, and h and l are the generalized Love
numbers:

h(0) — principal Love number;

h(i) — out-of-phase radial Love number;

h(2) — latitude Love number ;
h′ — zero degree Love number;

l(0) — principal Shida number;

l(i) — out-of-phase Shida number;

l(1) — second degree toroidal Love number;

l(2) — latitude Shida number;
l′ — first degree toroidal Love number;
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In order to transform equation (49) to the form suitable for computations we do the following
operations: 1) substitute direct expressions for vector harmonic fields (50); 2) add out-of-phase
terms; 3) expand the tidal potential in a Fourier time series; 4) separate the terms which depend
on station latitude and longitude from the terms which depend on time. After some algebra
we get the following expression for a tidal displacement vector ~dren with radial, east and north
components:

~dren =
m=2∑

m=0





~Xrc
1 (m, ϕ) ·

n(m)∑

k=1

Ak
~Lr

1(k) cos γkm − ~Xrs
1 (m, ϕ) ·

n(m)∑

k=1

Ak
~Lr

1(k) sin γkm

~Xrc
2 (m, ϕ) ·

n(m)∑

k=1

Ak
~Lr

2(k) sin γkm + ~Xrs
2 (m, ϕ) ·

n(m)∑

k=1

Ak
~Lr

2(k) cos γkm

~Xrc
3 (m, ϕ) ·

n(m)∑

k=1

Ak
~Lr

3(k) cos γkm − ~Xrs
3 (m, ϕ) ·

n(m)∑

k=1

Ak
~Lr

3(k) sin γkm





+

m=2∑

m=0





− ~Xic
1 (m, ϕ) ·

n(m)∑

k=1

Ak
~Li

1(k) sin γkm − ~Xis
1 (m, ϕ) ·

n(m)∑

k=1

Ak
~Li

1(k) cos γkm

~Xic
2 (m, ϕ) ·

n(m)∑

k=1

Ak
~Li

2(k) cos γkm − ~Xis
2 (m, ϕ) ·

n(m)∑

k=1

Ak
~Li

2(k) sin γkm

− ~Xic
3 (m, ϕ) ·

n(m)∑

k=1

Ak
~Li

3(k) sin γkm − ~Xis
3 (m, ϕ) ·

n(m)∑

k=1

Ak
~Li

3(k) cos γkm





(51)

where vector ~X depends only on station coordinates:

~Xrc
j (m, ϕ) = ~Zr

j (m, ϕ) · cos mλ

~Xrs
j (m, ϕ) = ~Zr

j (m, ϕ) · sinmλ

~Xic
j (m, ϕ) = ~Zi

j(m, ϕ) · cos mλ

~Xis
j (m, ϕ) = ~Zi

j(m, ϕ) · sinmλ

(52)

here ϕ is geocentric latitude and λ is positive towards east longitude. Vector ~Z is
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~Zr
1 =





P̄m
2

1

ge

P 0
2 P̄m

2

1

ge

0

1

ge





~Zi
1 =

(
P̄m

2

1

ge

)

~Zr
2 =





− m

cos ϕ
P̄m

2

1

ge

− m

cos ϕ
P 0

2 P̄m
2

1

ge

P 0
1

∂P̄m
2

∂ϕ

1

ge

∂P̄m
1

∂ϕ

1

ge





~Zi
2 =

(
− m

cos ϕ
P̄m

2

1

ge

)

~Zr
3 =





∂P̄m
2

∂ϕ

1

ge

P 0
2

∂P̄m
2

∂ϕ

1

ge

− m

cos ϕ
P 0

1 P̄m
2

1

ge

− m

cos ϕ
P̄m

1

1

ge





~Zi
3 =

(
∂P̄m

2

∂ϕ

1

ge

)

(53)

P 0
m is a Legendre function normalized to have maximal value 1:

P 0
1 = sinϕ P 1

1 = cos ϕ P 2
1 = 0

P 0
2 =

(
3

2
sin2 ϕ − 1

2

)
P 1

2 = 2 sin ϕ cos ϕ P 2
2 = cos2 ϕ

(54)

and P̄m
l are Legendre functions normalized over the surface of the unit sphere:

P̄ 0
1 = P 0

1 P̄ 1
1 = P 1

1 P̄ 2
1 = P 2

1

P̄ 0
2 =

√
5

4π
P 0

2 P̄ 1
2 =

√
15

32π
P 1

2 P̄ 2
2 =

√
15

32π
P 2

2

(55)

ge — the Earth’s equatorial gravity acceleration.
The summing in (51) is done over the constituents of the spectral expansion of the tide-

generating potential which is assumed to be in the form

Φm
2 (t, r) =

m=2∑

m=0

(
r

ae

)2

P̄m
2 (ϕ) ·

n(m)∑

k=1

Ak · cos γkm (56)
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where r is the distance from the geocenter, ae is the semi-major axis of the Earth, Ak is the
normalized amplitude of the k-th tidal wave and γkm is its argument:

γkm = ψk + θk + ωk ttdb + m
2π(ut1(t) − ttdb)

86400
(57)

ψk is the phase of the k-th wave, θk and ωk are the phase and frequency of the harmonic
argument of that wave. ttdb is the time elapsed since the fundamental epoch J2000.0 (12h 1
January, 2000) at the TDB scale. The difference ut1− ttdb in (57) takes into account variations
in the Earth’s rotation which were omitted in producing the tidal potential series. The variable
m=0,1,2 in 51–53 denotes the order of a tidal wave, subscript index 1,2,3 denotes component
of the displacement vector: radial, east, north, and summation is carried out over spectral
harmonics of the tidal expansion. The number of constituents in sum (56), n(m), is determined
by a truncation level.

The vector of generalized Love numbers is presented in the form

~Lr
1 = ( h(0), h(2), 0, h′ )⊤ ~Li

1 = h(i)

~Lr
2 = ( l(0), l(2), l(1), l′ )⊤ ~Li

2 = l(i)

~Lr
3 = ( l(0), l(2), l(1), l′)⊤ ~Li

3 = l(i)

(58)

All generalized Love numbers are considered to be complex and frequency-dependent. The
generalized Love numbers are computed according to the analytical expressions presented in
[Mathews (2001)] with corrections for some specific tidal waves taken from the tables.

The advantages of this scheme are that the sums like
∑

Ak
~Lr

1(k) sin γkm depend only on
time and do not depend on station coordinates, and therefore, may be used for the calculation
of displacements of many stations at the same epoch. The vectors ~X do not depend on time
and are computed only once.

The HW95 expansion contains sine and cosine coefficients C0 and S0. Having these co-

efficients, we can compute phases and amplitudes for (51) as ψk = − arctan
S0k

C0k
and

Am
k = ρ(m)

√
C2

0k + S2
0k , where ρ(m) is a re-normalization factor. It is

√
4π for tides of

the 0-th order and
√

8π for other tides.
Frequencies and phases of tidal constituents are easily computed via coefficients at funda-

mental arguments.

θi =
j=11∑

j=1

kij Fjo + θai

ωi =
j=11∑

j=1

kij Fj1 + ωai

(59)

where Fjq are fundamental coefficients from the theory of planetary motion [Simon et al.(1994)].
We neglected terms of the 2-nd degree and higher.
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2.5.2 Algorithm for the computation of displacements due to solid Earth tides of

the 3-rd degree

For computation of displacements due to solid Earth tides of the 3-rd degree with a precision of
0.1mm we can neglect frequency dependence of Love numbers and an admixture of terms in tide-
generating potential other than 3-rd degree as well as out-of-phase Love numbers. Therefore,
vector of displacements can be written in the form

~dren =
m=3∑

m=0





X3c
1 (m,ϕ)h3 ·

n(m)∑

k=1

Ak cos γkm − X3s

1 (m,ϕ)h3 ·
n(m)∑

k=1

Ak sin γkm

X3s
2 (m,ϕ) l3 ·

n(m)∑

k=1

Ak sin γkm + X3c

2 (m,ϕ) l3 ·
n(m)∑

k=1

Ak cos γkm

X3c
3 (m,ϕ) l3 ·

n(m)∑

k=1

Ak cos γkm − X3s

3 (m,ϕ) l3 ·
n(m)∑

k=1

Ak sin γkm





(60)

where X depends only on station coordinates in the following way:

X3c
j (m, ϕ)= Z3

j (m, ϕ) · cos mλ

X3s
j (m, ϕ)= Z3

j (m, ϕ) · sinmλ

here Z3
j is

Z3
1 (m, ϕ) = P̄m

3

1

ge

Z3
2 (m, ϕ) = − m

cos ϕ
P̄m

3

1

ge

Z3
3 (m, ϕ) =

∂P̄m
3

∂ϕ

1

ge

(61)

Legendre functions of third order are

P 0
3 =

(
5
2 sin3 ϕ − 3

2 sinϕ
)

P 1
3 =

(
5
2 sin2 ϕ − 1

2 sinϕ
)

cos ϕ

P 2
3 = sin ϕ cos2 ϕ

P 3
3 = cos3 ϕ

(62)

P̄ 0
3 =

√
7

4 π
P 0

3 P̄ 1
3 =

√
21

16 π
P 1

3

P̄ 2
3 =

√
105

32 π
P 2

3 P̄ 3
3 =

√
35

64 π
P 3

3

(63)

Analogously to the tides of the second degree, the amplitudes of the tide-generating potential
produced from the HW95 expansion should be multiplied by the same re-normalization factors.
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2.6 Computing displacements caused by pole tide

Earth’s rotation causes the deformation of the Earth’s figure. The variations in the Earth’s
rotation causes time variable deformations. The centrifugal potential at the point in the Earth
with coordinate vector ~r is

Vc =
1

2
(~r × ~Ω) (64)

where ~Ω is the vector of the Earth’s angular velocity. This potential has a permanent compo-
nent and the variable one. The permanent component causes a permanent displacement which
cannot be observed. According to an agreement, the variable part of the centrifugal potential is

determined as Vvc =
1

2
(~r × ~Ωvc) where

~Ωvc = Ωn




E1 − E10 − E11 t
E2 − E20 − E21 t

1



 (65)

where Ωn is the nominal Earth’s angular velocity and E1, E2, E11, E21 are reference position of
the vector of the angular velocity and its reference rate of change. Variations of third component
of the vector of the Earth’s angular is two order of magnitude less than the variations of the first
and second component, and can be neglected. Since the dependence of the centrifugal potential
with radius is the same as for the tide-generating potential, the theory of the solid Earth tides
can be applied for computing displacements caused by variations of the vector of the Earth’s
angular velocity. Using expression 49 for tidal displacements, after simple algebra we get the
following expression for displacement caused by pole tide:

~dren =





h2(ωSA)
Ω2

n r2

gloc

(
−r1 (E2 + E10 + E21 t) + r2 (E1 − E10 − E11 t)

)

ℓ2(ωSA)
Ω2

n r2

gloc

r3√
1 − r2

3

(
r1 (E1 − E10 − E11 t) + r2 (E2 − E20 − E21 t)

)

ℓ2(ωSA)
Ω2

n r2

gloc

1 − 2 r2
3√

1 − r2
3

(
−r1 (E2 + E10 + E21 t) + r2 (E1 − E10 − E11 t)

)





(66)

Love numbers are taken for the annual frequency ωSA = 1.991 · 10−7 rad s−1. It should be noted,
there is no unanimous agreement which parameters E1, E2, E11, E21 to use in the expression 66.
These parameters can be determined from fitting empirical series of ~q(t). But since the polar
motion is a stochastic process, regression parameters depend on the time period of estimation.
Change in E1, E2, E11, E21 will result in change of estimates of site position and velocity.

2.7 Computing displacements caused by mass loading

Displacement caused by various mass loading, ocean, atmospheric pressure, hydrology, are com-
puted by evaluating the convolution integral over the land and over the ocean:

u(~r, t) = ul(~r, t) + ∆P̄o(t)uo (67)

22



where ∆P̄o(t) is the uniform sea-floor pressure and ul(~r, t), uo(~r ) are

ul(~r, t) =
n∑

i=1

m∑

j=1

∆P (~r ′
ij , t) q(~r, ~r ′

ij) cos ϕi

∫ ∫

cellij

G(ψ(~r, ~r ′
ij)) ds

uo(~r ) =
n∑

i=1

m∑

j=1

q(~r, ~r ′
ij) cos ϕi

∫ ∫

cellij

G(ψ(~r, ~r ′
ij)) ds

(68)

and index i runs over latitude and index j runs over longitude. Here the integration over the
sphere is replaced with a sum of integrals over small cells. q = 1 for the vertical component.

Green’s functions have a singularity in 0, so care must be taken in using numerical schemes
for computing the convolution integral. Although the Green’s function cannot be represented
analytically over the whole range of its argument, we can always find a good approximation
over a small range. We approximate the function G(ψ) · ψ by a polynomial of the third degree
α + β ψ + γ ψ2 + δ ψ3. In order to compute the integral 68 over the cell, we introduce a two-
dimensional Cartesian coordinate system with the origin in the center of the cell and the axis x
towards east, the axis y towards north. We neglect the Earth’s curvature and consider the cell
as a rectangle with borders [-a, a], [-b, b] on the x and y axes respectively. Then the integral of
the Green’s function over the cell with respect to a site with coordinates (xs, ys) is evaluated
analytically:

∫ ∫

cell

G(ψ(xs, ys)) ds =

b∫

−b

a∫

−a

(
α

√
x2 + y2

+ β + γ
√

x2 + y2 + δ(x2 + y2)

)

dx dy =

(
α y2 +

γ

6
y3
2

)
ln

x2 + z22

x1 + z12
−

(
α y1 +

γ

6
y3
1

)
ln

x2 + z21

x1 + z11
+

(
α x2 +

γ

6
x3

2

)
ln

y2 + z22

y1 + z21
−

(
α x1 +

γ

6
x3

1

)
ln

y2 + z12

y1 + z11
+

(y2 − y1) (x2 − x1)

[

β +
δ

3

(
z2
11 + z2

22 + x1 x2 + y1 y2

)]

+

γ

3

[

x2

(
y2 z22 − y1 z21

)
− x1

(
y2 z12 − y1 z11

)]

x1 = −a − xs x2 = a − xs

y1 = −b − ys y2 = b − ys

z11 =
√

x2
1 + y2

1 z12 =
√

x2
1 + y2

2

z21 =
√

x2
2 + y2

1 z22 =
√

x2
2 + y2

2

(69)

Coordinates xs, ys are computed as

xs = ~E(~r ′
ij) · ~T (~r ′

ij , ~r ) ys = ~N(~r ′
ij) · ~T (~r ′

ij , ~r ) (70)

where ~T (~r ′
ij , ~r ) is

~T (~r ′
ij , ~r ) =

~r ′
ij × [~r × ~r ′

ij ]

|~r ′
ij × [~r × ~r ′

ij ]|
(71)
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and ~E(~r ′
ij), ~N(~r ′

ij) are unit vectors in east and north direction with respect to the center of the
cell:

~E(~r ′
ij) =




sinλ′

cos λ′

0



 ~N(~r ′
ij) =




sinϕ′ cos λ′

− sinϕ′ sinλ′

cos ϕ′



 (72)

It was found that when the coefficients α(ψ), β(ψ), γ(ψ) and δ(ψ) are computed with the
step 0.002 rad over the range [0, 0.16] rad, and with the step 0.02 rad over the range [0.16, π],
the error of the approximation of the integral 69 for a cell of size 0.044 rad (2◦.5) does not exceed
1%. At large angular distances we can consider the Green’s function to be constant over the
cell. For an angular distance more than 0.16 rad, taking the Green’s function out of the integral
68 and replacing it with the value at the angular distance between the site and the center of the
cell causes an error of less than 1%.

Two land-sea masks are used for practical computation: coarse with the resolution of the
surface pressure grid, and fine. If the cell of the coarse land-sea mask is completely land or
completely sea, this cell is used for computing the integral 69. Otherwise, the coarse resolution
cell is subdivided in smaller cells of the fine resolution grid, and the integral over each fine
resolution cell is computed independently. The surface pressure is considered as defined at the
corners of the coarse resolution cell. The pressure at the center of the cell is obtained by bi-
linear interpolation. When ul(~r ) is computed, the cells which are over ocean are bypassed.
Alternatively, the cells which are over land are bypassed when uo(~r ) is computed.

The computation of horizontal vectors is done separately for north and east components.
The north and east components of the vector ~q(~r, ~r ′) are

~qn(~r, ~r ′) = −~T (~r, ~r ′) · ~N(~r ) ~qe(~r, ~r
′) = −~T (~r, ~r ′) · ~E(~r ) (73)

where ~T (~r, ~r ′) is defined in a way similar to 71, but with the reverse order of arguments,
~E(~r ), ~N(~r ) are defined according to 72, but are the unit north and east vectors for the site
under consideration.

Displacement caused by ocean tidal mass loading, non-tidal ocean mass loading, atmosphere
pressure loading and hydrology loading are computed the same ways. Only the the pressure
fields ∆P (~r ′

ij , t), ∆P̄oP (~r ′
ij , t) differ. These are empirical functions which are derived from

analysis of observations.

2.8 Tropospheric path delay

Propagation medium causes an additional delay τm, which can be written in the form of the
integral along the path l, which in general is bended:

τm =

∫
(n(l) − 1)dl (74)

Traditionally path delay τm in the ionosphere, the neutral equilibrium atmosphere, and in
the non-equilibrium constituent of the atmosphere is considered separately. The ionosphere is a
dispersive medium, so there exists a linear combination of observables at two or more frequencies
which reduces the ionospheric contribution to that combination to zero. The propagation of the
signal in the neutral atmosphere depends on the dependence of the refractivity with height and
possibly with spatial coordinates. This dependence can be computed on the basis of the gas
law for the equilibrium component, and the integral 74 can be computed analytically. It turns
out, in that case the integral 74 depends only on the surface pressure and the local gravity
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acceleration. The integral 74 should be computed numerically using empirical data about the
global partial refractivity distribution due to the non-equilibrium constituent. Being viewed in
the local topocentric coordinate system, the tropospheric path delay depends on elevation and
azimuth. This can be parameterized in the form

τtr = ρzdRzd(Ev, A) + ρzwRzw(Ev, A) (75)

where A is the azimuth and Ev is the source elevation ignoring bending in the atmosphere, but
taking into account annual aberration, Ev = arcsin(~r3c

~Sa). The tropospheric path delay is split
into two parts, the equilibrium (dry) and the non-equilibrium part [Davis (1985)]. Both the
equilibrium and the non-equilibrium parts are presented as a product of the part which depends
on ground meteorological parameters, and the dimensionless part called mapping function, which
depends only on elevation and azimuth and normalized to unity in the zenith direction. Thus,
the first part of the product has a meaning of zenith path delay.

In the past various expressions were proposed for the zenith path delay and the mapping
function. Currently, the expression of Saastamoinen for the zenith path delay and the Niell
mapping function are used. There is no evidence that alternative expressions which use ground
meteorological information produce better results.

Saastamoinen expression [Saastamoinen(1972a), Saastamoinen(1972b)] for the non-equilibrium
(dry) zenith path delay:

ρzd =
Kd R

Md c
· P

gloc −
∂g

∂h
(0.9hort + 7300)

ρzw =
Kd R

Md c
· 1255((T ◦C + 273.15) + 0.05)Ew

gloc −
∂g

∂h
(0.9hort + 7300)

(76)

where

Kd = 7.7604 · 10−4 — dry air refractivity;

R = 8.314742 (J · K−1· mole−1) — the universal gas constant;

Md = 28.9644 — the mole mass of dry air;

c — velocity of light;

P — the surface total pressure (Pascal);

E — the surface partial pressure of water vapor (Pa);

T ◦C — the surface temperature (in Celsius)

gloc — the local gravity acceleration;

hort — ortometric height of the antenna reference point (ref 44).

The following expression for the local gravity acceleration can be used:

gloc = ge

1 +
∂g

∂ϕ
sin2 ϕast

√
1 − (2f⊕ − f2

⊕) sin2 ϕgeod

+
∂g

∂h
hort (77)
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where ge — the equatorial gravity acceleration.
The absolute humidity Ew is not measured directly but deduced from observations of the of

the relative humidity, i.e. the ration of the partial water vapor pressure to the pressure of the
saturated water vapor at a given temperature. The following expression of [Goff & Gratch, 1946]
for the pressure of the saturated water vapor Es accepted by the International Meteorological
Association can be used which is accurate to a 0.02% level:

lg Es = 10.795 74

(

1 − T ◦Ki

T ◦K

)

−

5.028 00 lg

(
T ◦K

T ◦Ki

)

+

1.504 75 · 10−4 ·
(

1 − 10
−8.2969

(
T ◦K
T ◦Ki

− 1
))

−

4.287 3 · 10−4 ·
(

1 − 10
−4.769 55

(
T ◦K
T ◦Ki

− 1
))

+2.786 14

(78)

here T ◦Ki is the triple point of water (T ◦Ki = 273.◦16K).
In the case, if no pressure measurement were done at the antenna, so-called standard at-

mosphere of the International Meteorological Association can be used. The dependence of the
atmospheric pressure on height for the standard atmosphere (table 3.9-2 in [Hrgian, 1975] can
be approximated with the accuracy better 7 Pa at the height range [-700, 5500] meters using
the following regression:

P = 101324.2 · exp(−1.1859 · 10−4Hg − 1.1343 · 10−9H2
g−

2.5644 · 10−14H3
g )

(79)

where Hg is the geopotential height, which on the Earth surface can be computed as

Hg =
9.806 65

gloc
hort (80)

In general the barometer is located at a different height than the antenna reference point.
The air pressure at the antenna reference point differs from the air pressure of the barometer at
∆P = −101324.2 · 1.1859 · 10−4∆h.

The global Niell mapping functions [Niell (1996)] Rd(E) and Re(E) are used:

R(E) =

1 +
a

1 +
b

1 + c

sinE +
a

sinE +
b

sin E + c

+





1

sinE
−

1 +
at

1 +
bt

1 + ct

sinE +
at

sinE +
bt

sinE + ct





· 10−3hort (81)

Coefficients a, b, c depends on latitude and time for the the hydrostatic mapping function, and
only on latitude for the non-hydrostatic mapping function. The coefficients at, bt, ct are constants
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Figure 2: Geometry of modeling residual refractivity

for the hydrostatic mapping function and zero for the non-hydrostatic mapping function:

ah =
7∑

k

a1k B1
k(|ϕ|) −

7∑

k

a2k B1
k(|ϕ|) cos(ψ0 + ωsat) aw =

7∑

k

a3k B1
k(|ϕ|) aht = const

bh =
7∑

k

b1k B1
k(|ϕ|) −

7∑

k

b2k B1
k(|ϕ|) cos(ψ0 + ωsat) bw =

7∑

k

b3k B1
k(|ϕ|) bht = const

ch =
7∑

k

c1k B1
k(|ϕ|) −

7∑

k

c2k B1
k(|ϕ|) cos(ψ0 + ωsat) cw =

7∑

k

c3k B1
k(|ϕ|) cht = const

(82)

and awt = bwt = cwt = 0. Here ωsa — the angular frequency, which corresponds to the period
of one year, B1

k(|ϕ|) is the B-spline of the 1st degree which depends on the absolute value of the
geocentric latitude.

In a case if the distribution of residual refractivity is known, mapping function can be
computed by integration. Let us consider a case when a) the residual atmosphere is con-
sidered uniform, i.e. its density does not depends on longitude and latitude; b) dependence
of the residual refractivity on height h is described by a Gaussian layer model: r(h) =
ro exp−4 ln(2) (h − hl)

2/w2, where hl is the height of the layer with maximum residual refrac-
tivity and w is the full width half maximum of the distribution; c) bending in the atmosphere
is neglected.

According to that model, photon propagates along slanted direction s. Within interval ∆d
the path delay is proportional to r(s)ds. The photon at at distance s has height h which by
solving the triangle with sides R, s, R + h in figure 2 is h = R(

√
1 + 2 sin e s/R + (s/R)2 − 1).

For the vertical direction, the integral of refractivity over the path is proportional to integral
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∫
exp{−4 ln 2 (h − hl)

2/w2} dh. Thus, the mapping function for the residual atmosphere is

m(e) =

∞∫

0

exp{−4 ln 2 R2/w2
(√

1 + 2 sin e y + y2 − (1 + hl/R)
)2

dy}

∞∫

0

exp{4 ln 2 (h − hl)
2/w2} dh

, (83)

where y = s/R. In practice, the limits of the integral in the denominator falls below some
value ε. For instance, the expression under integral is below 1.5 · 10−5 outside these limits:
hmin = min(0, hl − 2w), hmax = hl + 2w. Analogously, using the relationship between y and h
by solving triangle with sides R, s, R + h we find limits for the nominator:

ymin =
√

sin2 e + 2hmin/R + (hmin/R)2 − sin e, (84)

ymax =
√

sin2 e + 2hmax/R + (hmax/R)2 − sin e. (85)

2.9 Ionospheric path delay

Electromagnetic wave propagates in plasma with phase velocity

vp = c

√√√√1 − Nv e2

me εo ω2 (86)

where Nv — electron density, e — charge of an electron, me — mass of an electron, εo —
permittivity of free space, ω — angular frequency of the wave and c — velocity of light in
vacuum. Phase velocity in ionosphere is faster than velocity of light in vacuum.

After integration along ray path, expanding expression 86 with holding only the term of the
first order, we get the following expression for additional phase rotation caused by ionosphere:

∆ϕ = −α

ω
(87)

where α is

α =
e2

2 c me εo

(∫
Nv ds1 −

∫
Nv ds2

)
(88)

s1 and s2 are paths of wave propagation from a source to the first and second station of the
radio interferometer.

If to express
∫

Nv ds in units 1 · 1016 electrons/m2 (so-called TEC units) then after having
substituted values of constants we get

α = 5.308018 · 1010 sec−1

A fringe phase in channel i is expressed as

ϕi = τph ωo + τgr (ωi − ωo) −
α

ωi
(89)
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where ωo — is a reference sky frequency.
Unknown quantities phase and group delays: τph and τgr can be determined from equations

(89) by using weighted LSQ. Equations of conditions for such a problem can be written as

τph
∂ϕi

∂τph
+ τgr

∂ϕi

∂τgr
= ϕi +

α

ωi
(90)

Actually, group and phase delays are obtained in fringing software by minimizing delay
resolution function. However, it can be demonstrated that this method gives the same results
as solving equations (90) by LSQ provided

• weights
(Ui + Li)Ai

ν
are ascribed equations of conditions. Ui and Li is the number of

processed samples in upper and lower sideband of the i-th channel, Ai amplitude in this
channel, ν — sampling rate.

• residual phases are not large. In practice the difference in estimates of group delay obtained
by minimizing delay resolution function and by solving equations of conditions does not
exceed 0.1 ps if residual phases are less than 0.4 rad (23◦).

Now let’s obtain explicit expression for delays by solving (89) by LSQ:

x̂ =
(
(rA

⊤

) rA
)−1

(rA
⊤

)x (91)

where A — matrix of equations of conditions, r — vector of weights, x — vector of right parts
of equations of conditions.

Partial derivatives are

∂ϕi

∂τph
= ωo

∂ϕi

∂τgr
= ωi − ωo (92)

We can use the explicit expression for an invert of a symmetrical 2x2 matrix:




A11 A12

A12 A22





−1

=





A22

∆
−A12

∆

−A12

∆

A11

∆




∆ = A11A22 − A2

12 (93)

We can easily find blocks of normal matrix and normal vector:

rA11 = ω2
o

n∑

i

ri

rA12 = ωo

n∑

i

ri(ωi − ωo)

rA22 =
n∑

i

ri(ωi − ωo)
2

∆ = ω2
o




n∑

i

ri ·
n∑

i

ri(ωi − ωo)
2 −

(
n∑

i

ri(ωi − ωo)

)2




(94)
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Then we can write solution of system of normal equations (92):




τph

τgr



 =





A22

∆
−A12

∆

−A12

∆

A11

∆









ωo

n∑

i

riϕi + α ωo

n∑

i

ri

ωi

ωo

n∑

i

ri(ωi − ωo)ϕi + α
n∑

i

ri
ωi − ωo

ωi




(95)

or after some algebra

τph =

n∑

i

ri(ωi − ωo)
2 ·

n∑

i

riϕi −
n∑

i

ri(ωi − ωo)
n∑

i

ri(ωi − ωo)ϕi

ωo




n∑

i

ri ·
n∑

i

ri(ωi − ωo)
2 −

(
n∑

i

ri(ωi − ωo)

)2



− α

ω2
ph

τgr =

n∑

i

ri ·
n∑

i

ri(ωi − ωo)ϕi −
n∑

i

ri(ωi − ωo)
2

n∑

i

riϕi




n∑

i

ri ·
n∑

i

ri(ωi − ωo)
2 −

(
n∑

i

ri(ωi − ωo)

)2



+

α

ω2
gr

(96)

where ωph and ωgr are

ωph =

√√√√√√√√√
ωo

n∑

i

ri ·
n∑

i

ri(ωi − ωo)
2 −

(
n∑

i

ri(ωi − ωo)

)2

n∑

i

ri(ωi − ωo)
n∑

i

ri
(ωi − ωo)

ωi
−

n∑

i

ri(ωi − ωo)
2 ·

n∑

i

ri

ωi

ωgr =

√√√√√√√√√

n∑

i

ri ·
n∑

i

ri(ωi − ωo)
2 −

(
n∑

i

ri(ωi − ωo)

)2

n∑

i

ri(ωi − ωo)
2

n∑

i

ri

ωi
−

n∑

i

ri ·
n∑

i

ri
(ωi − ωo)

ωi

(97)

ωph and ωgr are called effective ionosphere frequencies for ionosphere contribution. They
have clear physical meaning: if the wide-band signal be replaced by a quasi-monochromatic
signal with a group or phase effective ionosphere frequency then contribution to group or phase
delay would be the same.

2.9.1 Ionosphere-free linear combinations

Using notion of ionosphere effective frequencies we can express observed group and phase delays
at X and S bands through ionosphere free delay τif and parameter α:

τgx = τif +
α

ω2
gx

τgs = τif +
α

ω2
gs

τpx = τif − α

ω2
px

τps = τif − α

ω2
ps

(98)

30



Here the first letter in indexes stands for group or phase delay and the second letter stands
for X or S band. Using these equations we can eliminate unknown parameter α and express
ionosphere free delay through a linear combination of two or three observables. The most
important ionosphere-free linear combination of observables are given below:

G Gxs =
ω2

gx

ω2
gx − ω2

gs

τgx − ω2
gs

ω2
gx − ω2

gs

τgs

PxGs =
ω2

px

ω2
px + ω2

gs

τpx +
ω2

gs

ω2
px + ω2

gs

τgs

PxGx =
ω2

px

ω2
px + ω2

gx

τpx +
ω2

gx

ω2
px + ω2

gx

τgx

(99)

Alternative way is to use expression for ionosphere contribution to group delay at X band:

τigx = −
ω2

gs

ω2
gx − ω2

gs

(τgx − τgs) (100)

One can say τigx is to be added to theoretical delay and thus it will “correct” or “calibrate” group
delay at X band for the ionosphere contribution. This approach is rather ugly since “calibration”
or “correction” to group delay already contains this quantity (we correct observable X using the
measurement of this observable itself). In order to avoid this logical pitfall is its preferable that
the concept of ionosphere-free linear combinations of observables should be used.

Ionosphere frequencies vary from an experiment to experiment and they even varies during
the same experiment. The table below shows typical cyclic ionosphere frequencies and ionosphere
delays for experiment c1014 (01JUL09XA):

fgx = 8.557 · 109 Hz fgs = 2.293 · 109 Hz
fpx = 8.215 · 109 Hz fps = 2.233 · 109 Hz
τigx = 18.3 ∆TEC ps τigs = 255.6 ∆TEC ps
τipx = 19.9 ∆TEC ps τips = 269.5 ∆TEC ps

(101)

2.9.2 Ionosphere calibration using ionosphere electron contents from GPS

GPS observations are made at two frequencies, 1.2276 and 1.57542 GHz. A linear combination
of two observables provides an estimate of the instantaneous TEC. Analysis of continuous GPS
observations from a global network comprising 100–300 stations makes it feasible to derive
an empirical model of the total electron contents over the span of observations using data
assimilation technique. Such a model is routinely delivered by GPS data analysis centers since
1998. The model provides values of the TEC on a regular 3D grid. The axes of the grid are
longitude, latitude, and time. The accuracy and resolution of GPS TEC model is constantly
improving and is expected to improve in the future. In 2010, several analysis centers produced
TEC model outputs with spatial resolution 5◦ × 5◦ and time resolution 2 hours.

For the purpose of modeling, the ionosphere is considered as a thin spherical layer at the
constant height H. Typical value of H is 450 km. In order to compute the TEC from GPS maps
we need to know the coordinates of the point at which the ray pierce the ionosphere — point J
in figure 3. First we find the distance from the station to the ionosphere piercing point D = |SJ |
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Figure 3: Ray passing through the ionosphere

by solving triangle OSP . Noticing that |OS| = R⊕ and |OJ | = R⊕ + H, we immediately get

β = arcsin
cos E

1 +
H

R⊕

D = R⊕

√
2 H

R⊕
(1 − sin (E + β)) +

(
H
R⊕

)2

(102)

Then Cartesian coordinates of point J are ~r+D~s. Transforming them into polar coordinates
geocentric latitude and longitude, we get arguments for interpolation in the 3D grid. Since the
accuracy of TEC models relatively low, the choice of interpolation is irrelevant. The VTD uses
3-dimensional B-spline interpolation by expanding the TEC field into the tensor products of
basic splines of the 3rd degree, although linear interpolation between the closest nodes of the
grid would be sufficient. Interpolating the TEC model output, we get the TEC through the
vertical path |JIo|. The slanted path |JI1| is |JIo|/ cos β. Therefore, we need to multiply the
vertical TEC by 1/ cos β(E), which maps the vertical path delay through the ionosphere into
the slanted path delay. Here we neglect the ray path bending in the ionosphere. We also neglect
Earth’s ellipticity, since the Earth was considered spherical in the data assimilation procedure
of the TEC model.

Combining equations, we get the final expression for the contribution of the ionosphere to
path delay:

τiono = ±
α

4 π2 f2
eff

TEC
1

cos β(E)
, (103)

where feff is the effective cyclic frequency, and sign plus is for contribution to group delay, and
sign minus is for contribution to phase delay.
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2.10 Delay caused by source structure

In derivation of the expression for VLBI delay we assumed that the source is point-like. In
general, the complex coherence function Γ12 according to the Van Zitter–Zernike theorem is

Γ12(bx, by, ω) = eiωτ0

+∞∫

−∞

∫
B(x, y, ω)e−2πi(xbx + yby)/λdx dy (104)

where ω is the angular reference frequency of received signal, λ is the wavelength wavelength, τ0

— the geometric delay to the reference point on the source, B — the two-dimensional function
of the brightness distribution, which depends on local Cartesian spatial coordinates x, y. These
coordinates are zero in the point to which τ0 corresponds. bx, by are projection of the baseline

vector ~b = ~r1 − ~r2 to the plane that is perpendicular to the center of the map (x=0, y=0).
Integral (104) is called visibility function.

Ort ~y of the local Cartesian spatial coordinates related to the source position is defined as a

unit vector which lies in the plane of vectors ~S and ~z and is perpendicular to ~s (where ~z is the

unit vector in the direction of the pole, i.e ~zt = (0, 0, 1)
⊤

). Ort x is defined as the vector which
is perpendicular to both ~s and ~y, in such a manner that three vectors (~x, ~y,~s) would form the
right triplet:

~x =
~z ×~s

|~z ×~s|

~y =
~s × ~x

|~s × ~x| =
~z −~s (~s~z)

|~z −~s (~s~z)|

(105)

The phase of the coherence function is expressed as

Φ = τ0ω + arctg
Im V (bx, by, ω)

Re V (bx, by, ω)
(106)

Here we denoted the visibility function (integral in 104) with letter V . The contribution of the
source structure to phase delay is the second term in 106 divided by the speed of light:

τps =
1

c
arctg

Im V (bx, by, ω)

Re V (bx, by, ω)
(107)

The group delay is determined as

τgs =
∂

∂ω
V (bx, by, ω) (108)

We can transform expression 108 to

τstr(bx, by) =
2π

c|V |2
[

Re V (bx, by) ·
(
~bs

−−−−−−−−−−−−→
Im (∇V(bx, by))

)
−

Im V (bx, by) ·
(
~bs

−−−−−−−−−−−−→
Re (∇V(bx, by))

) ] (109)

where

~bs =

(
~b~x
~b ~y

)
−−→∇V =





∂

∂bx
V

∂

∂by
V



 (110)
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This gives us an expression for the contribution of the source structure to group delay in the
general form.

2.11 Coupling effects

There is a term τp, the propagation delay, in the expression for time delay 12. It is convenient to
take it out the expression 12, since the propagation delay depends on meteorological parameters
which cannot be predicted in advance. If we take the term τp out of 12, than the total delay is

t2 − t1 = (t2 − t1)geom + τp −
1

c
~V⊕ · ~S τp (111)

where (t2−t1)geom is the contribution to delay without delay in the medium of propagation. The
last term which give rises from the denominator in 12 is called coupling between the geometric
delay and the propagation delay.

The second coupling effects give rise due to change of the height of the phase center of the
receiver due to slewing as ∆h = ~fb ·~r3c. The path length through the atmosphere is changing
and therefore, the tropospheric path delay. Since the expression for the zenith was referred to
the reference point of the antenna, a small correction is needed. Since the tropospheric path

delay is proportional to the surface pressure, ∆τp = τp
∆P

P
. Using expression 79, we get

∆τca = -1.1859 · 10−4
(
τt1

~fb1 ·~r1,3c − τt2
~fb2 ·~r2,3c

)
(112)

where ~r1,3c denotes the 3rd component of the position vector in the geocentric inertial coordinate
system of the 1st antenna, and ~r1,3c denotes the 3rd component of the position vector of the
2nd antenna. τti is the tropospheric path delay at the ith antenna. The additional delay 112 is
called “coupling between the antenna axis and the tropospheric path delay”.

3 Implementation of computation of the theoretical path delay,

delay rate and partial derivatives with respect to parameters

of model

The model described above is implemented in library VTD. Computation procedures is specified
in the control file. The control file has the syntax of a pair keyword—value. The value may
be either the name of the file with a priori values, or the option code, or the name of another
control file. The computation procedure for delay, delay rate and partial derivatives of delays
over parameters of the model has many options. Care should be taken for using options. Some
options are designed for comparison tests only, some options produce correct results only if they
correspond to specific a priori files.

3.1 Computation before processing the first observation

Some reduction quantities can be computed beforehand when a range of instants of observations,
typically 24 hour or less, is known.

Before processing the first observation station coordinates from the input catalogue specified
in the keyword STATION COORDINATES are read. The following quantities are computed for
each station: longitude, geocentric latitude, geodetic latitude, orthometric height (the hight with
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respect to the reference ellipsoid), local gravity acceleration, transformation matrix from the lo-
cal topocentric coordinate system Up–East–North to the Cartesian terrestrial coordinate system
as well as the transformation matrix from the local topocentric coordinate system Radial–East–
North to the Cartesian terrestrial coordinate system. In the first case the geodetic latitude is
used in expression 43 and the second case the geocentric latitude. Time independent vectors
~Xrc

j (m, ϕ), ~Xrs
j (m, ϕ), ~Xic

j (m, ϕ), ~Xis
j (m, ϕ), X3c

j (m, ϕ), X3s
j (m, ϕ) which are used for computa-

tion of displacement caused by the solid Earth tides, expressions 52, 2.5.2, are computed and
stored at this step.

The station motion is determined with several models. Contribution from each model is
summed up.

Station linear motion is determined by velocities in the apriori file specified in the the keyword
STATION VELOCITIES. These a priori velocities are either adjusted in the VLBI solution or
computed on the basis of apriori models, f.e. NUVEL if no observation at that station was
made.

For each station the B-spline model of 0-th degree is defined in the file specified by the
keyword STATION ECCENTRICITIES. These are either motions of the antenna reference point
with respect to the ground marker or displacements due to human activity, for instance, rail
repairing, measured with a high accuracy local survey. For many stations this model is zero.

The type of antenna mounting, the length of the antenna axis offset | ~fb| and the code of
the tectonic plate where the station resides are defined in the file specified by the keyword
STATION DESCRIPTION.

Traditionally, time tags of VLBI formatters are shifted to show pseudo–UTC. The UTC is a
non-differentiable function of time. It can be represented in a form of expansion over the basis
of B-splines of zeroth degree. The table with epochs and amounts of jumps is specified by the
keyword LEAP SECOND. NB: formatter tag keeps the so-called pseudo-UTC. If the jump of
UTC(t) function took place in the middle of an experiment, this jump is not applied till the end
of an experiment. Therefore, in order to get a TAI instance of time that corresponds to UTC(t),
one should substitute as an argument of [UTC-TAI](UTC) not the time tag at the moment of
an observation, but the time tag at the moment of a nominal session start.

Position of big planets, the Sun, the Earth and the Moon are computed in accordance
with numerical ephemerides using Chebyshev polynomials. Ephemerides DE403 and DE405 are
supported. The file name is specified by the keyword DE EPHEMERIDES. The argument for the
numerical ephemerides is TDB. The difference TDB − TAI(t) is

TDB(t) = TAI +

t∫

t0

(
1

2c2 v2 +
U

c2 − LB

)
dt + 32.184 (113)

This differs from 3 only by term LB under the integral. With accuracy 10−5 s we can get the
simplified expression for TDB:

TDB(t) = t + 32.184 + A1 sin(ϕSA + ωSATJ) + A2 sin(2(ϕSA + ωSATJ))e (114)

where ωSA = 1.990968752920 · 10−7 rad s−1 is the annual frequency, ϕSA = 6.240076 rad,
A1 = 0.001658 s, and A2 = 1.4 · 10−5 s

3.2 Computation of the rotation matrix from the terrestrial coordinate sys-

tem to the celestial coordinate system

There are several options to compute the rotation matrix which accounts for the Earth’s rotation.
All these options involves a sum of the secular model and coefficients of the empirical expansion.
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The secular model is either analytical, or semi-analytical or empirical. It is valid for a long
period of time (more than 10 years). The empirical expansion is valid for a short period of time
(0.5–5.0 days). The accuracy of the resulting rotation matrix depends on accuracy of the a priori
empirical expansion. There is no “good” or “bad” a priori model to the rotation matrix, but
the model can be consistent or inconsistent, However, the empirical expansion was made on the
basis of a certain secular model. Therefore, they both should be applied as a consistent pair.
An inconsistent pair of model may potentially have very large errors. Library VTD similar to
other modern astronomical reduction programs supports a wide range of options. Care should
be taken to set options which are consistent.

3.2.1 IERS time series approach

In accordance to that approach parameters ζ0, θ0, z0, ε0 are computed using an expansion over
low degree polynomials, δψ, δε are computed using expansion over the quasi-harmonic basis,
UT1, Xp, Yp are computed by interpolating time series. One of the modifications of the IERS
time series approach suggests using time series of expansion of empirical corrections to δψ, δε.
Library VTD does not implement such a modification.

The file with time series for UT1, Xp, Yp is specified by keyword EOP SERIES. EOP-MOD
Ver 2.0 format of input EOP files is supported. The keyword EOP TIME SCALE specified by
name if the argument used in that file: TAI, or some function of time: TDB, TDT, UTC, UT1.
Coefficients of interpolating spline of the 3rd degree are computed for UT1, Xp, Yp. An option
to subtract harmonic model of variations in UT1 caused by zonal model is supported. The
name of the model is specified by keyword UZT MODEL. The following values are supported:
DICKMAN1993, DICKMAN1993 SHORT, and DICKMAN1993 PRINCIPLE for [Dickman, 1993] model.
Value DICKMAN1993 means that all term of that model are used. Value DICKMAN1993 SHORT

means that terms with periods less than 60 days are used. Value DICKMAN1993 PRINCIPLE

means that 14 terms of the expansion are used, the contribution of omitted terms to UT1 rate
being less than 10−14 rad s−1. The value of the keyword UZT USE specifies how to apply
contribution to UT1 caused by zonal tides. Value ADD means that the contribution to UT1 will
be added to function UT1 computed on the moment of observation; value SUBTRACT means that
the contribution to UT1 will be subtracted from function UT1 computed on the moment of
observation; value INTERPOLATE means that the contribution to UT1 will be subtracted from
tabulated values of UT1 before computing coefficients of the interpolating and added back to
function UT1 computed on the moment of observation.

Precession expansion is defined by keyword PRECESSION EXPRESSION. It can have values
either LIESKE 1977 for [Lieske et al., 1976] semi-empirical low degree polynomial expansion or
CAPITAINE 2003 for low degree polynomial expansion [Capitaine et al.(2003a)].

Nutation expansion is defined by keyword NUTATION EXPANSION. It can have the following
values:

• WAHR1980 — for Wahr 1980 expansion;

• IERS1996 — for IERS1996 expansion;

• REN2000 — for REN2000 expansion;

• MHB2000 — for MHB2000 expansion;

• MHB2000 TRANSF — for the transfer function from the MHB2000 expansion applied to the
REN2000 expansion without so-called add-on ad hoc terms;
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• PETA — for the shortened version of the REN2000 expansion which comprises only of three
largest terms.

Including geodesic nutation in ∆ψ, ∆ε computation is optional and is controlled by the
keyword GEODESIC NUTATION. Value YES forces to add contribution of the geodesic nutation
to nutation angles.

Computation of the rotation matrix maybe slightly altered of keyword EROT COMPAT

has value CALC10. In that case a) additional spurious terms are added to parameter S:
1) 7.07827 · 10−8 — residual in the LLR solution of Chapront; 2) -4.557249 · 10−10 — accumu-
lated difference of using UT1 instead of TAI in expression for S in the past 3) 4.462899 · 10−20

TJ rad s−1 unknown term; -7.220525 · 10−20 Tj rad s−1 — spurious term introduced by
N. Capitaine in order to have a symmetry in her formulae; b) terms δΨ0 and Ep0 are sub-
tracted from δΨ and δε, and the rotation transformation matrix is multiplied from the left by
R̂1(−∆Ψ0 sin ε0) · R̂2(Ep0) · R̂3(7.07827 · 10−8). This change is done for comparison tests with
Calc10.

The keyword HARMONIC EOP FILE specified the file with empirical harmonic variations in
the Earth rotation with respect to some apriori model. It compensates errors in the nutation
model and omitted terms which are not forced nutations, for example, terms excited by the
oceanic response and the free core nutation.

3.2.2 Earth rotation model approach

In that case instead of specifying the file with time series of Xp, Yp, UT1, code of precession,
nutation, the file with 30 coefficients of the a priori Earth rotation model is specified. The apriori
model of expansion of the vector of of small perturbational rotation ~q(t) over the B-spline basis
and Fourier basis can optionally be specified in keywords ERM FILE and HARMONIC EOP FILE.

Typical setup when the IERS time series approach is selected

AEM_FILE: NONE

ERM_FILE: NONE

HARMONIC_EOP_FILE: NONE

#

EOP_SERIES: {file_name}

EOP_TIME_SCALE: TDB

UZT_MODEL: NONE

UZT_USE: NONE

PRECESSION_EXPRESSION: CAPITAINE_2003

NUTATION_EXPANSION: MHB2000

GEODESIC_NUTATION: NONE

EROT_COMPAT: NONE

Typical setup when the ERM approach is selected

AEM_FILE: {file_name}

ERM_FILE: {file_name}

HARMONIC_EOP_FILE: {file_name}

#

EOP_SERIES: NONE

EOP_TIME_SCALE: NONE
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UZT_MODEL: NONE

UZT_USE: NONE

PRECESSION_EXPRESSION: NONE

NUTATION_EXPANSION: NONE

GEODESIC_NUTATION: NONE

EROT_COMPAT: NONE

3.3 Site displacement models

Computation of displacements caused by solid Earth tides is controlled by several keywords.
The keyword SOLID EARTH TIDES 2ND DEGREE specifies the name of the model for the de-
pendence of the generalized Love numbers on frequency for the solid Earth tides of the 2nd
degree, except the constituent with zero frequency. The models differ in parameters of the res-
onance close to the nearly diurnal free wobble and effect of anelasticity on Love numbers at low
frequencies.

• MDG97EL — The elasticity variant of [Mathews et al., 1997] model;

• MDG97AN — The anelasticity variant of [Mathews et al., 1997] model;

• DDW99EH — The equilibrium variant of [Dehant et al., 1998] model;

• DDW99IN — The non-equilibrium variant of [Dehant et al., 1998] model;

• LOVE — Love numbers are considered to be frequency independent: h = 0.609, l = 0.0852;

• MATHEWS 2000 — The variant of Mathews model as it was presented in IERS Conventions
2003;

• MATHEWS 2001 — The variant of [Mathews (2001)] model’

• NONE — Displacements caused by solid tides are considered to be zero.

The expansion of the tide-generating potential contains terms of zero frequency. This con-
stituents in the expansion induce the permanent displacement which is included in estimates
of site position. The keyword SOLID EARTH TIDES ZERO FREQ specifies the Love number
which is to be used for computing displacement due to zero-th frequency in the tide-generating
potential, i.e. the permanent tide.

• MDG97AN — The anelastisity variant of [Mathews et al., 1997] model;

• FLUID — The Love numbers of the fluid limit: h2(ω=0) = 0.94, ℓ2(ω=0) = 0;

• ZERO — h2(ω=0) = 0.0, ℓ2(ω=0) = 0.0, i.e. the displacement vector will have only
periodic terms and the zero mean.

Displacements caused by pole tide are computed using the Love numbers model specified by
the keyword MPL FILE. The supported values of this keyword are the same as for the keyword
SOLID EARTH TIDES 2ND DEGREE. Parameters for the linear model of components 1,2 of the
perturbing vector of the Earth rotation ~q are defined in an external file. The name of this external
file is specified in the keyword MPL FILE. Value NONE means that parameters E1, E2, E12, E22

are zero.
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Computation of displacements caused by solid Earth tides of the 3rd degree is control be key-
word SOLID EARTH TIDES 3RD DEGREE. Two values are supported: NONE and MDG97. Value
NONE means that no displacements caused by tides of the 3rd degree should be computed. Value
MDG97 means that the Love numbers of the 3rd degree according to [Mathews et al., 1997] should
be used.

The keyword AXIS OFFSET MODEL specifies whether the contribution to delay caused by
motion of the receiver’s phase center with respect to the antenna’s reference point should be
taken into account (value YES), or not (value NONE).

Displacements caused by various loading are computed by stand-alone programs. Displace-
ments at a specific station caused by ocean loading are computed by evaluating the convolution
integral 68 of the ocean tides model with appropriate Green’s functions. The ocean tides model
presents the complex amplitude of sea level change at a latitude/longitude grid for each har-
monic constituent. The ocean tides model typically consists of 8–18 constituents. As a results
of evaluating the convolution integral, complex amplitude for three components of the position
vector in local topocentric coordinates system Up–East–North are computed.

Displacements at a specific station caused by the atmospheric pressure loading are computed
by evaluating the convolution integral 68 and the surface atmospheric pressure field from global
numerical weather models. First, the diurnal and semi-diurnal variations in surface pressure
of the global atmospheric field are removed, since the atmospheric pressure variations at these
frequencies in numerical weather models are corrupted, because their frequencies are close to
the Nyquist frequency of the sampling input meteorological data. The semi-diurnal pressure
variations are transformed to a standing wave, and the diurnal variations are folded with the
ter-diurnal. Amplitudes of the diurnal and semi-diurnal signal present in the data are computed
by LSQ fitting over a long time interval and subtracted from the initial pressure field fro the
numerical weather mode. The convolution integral is computed separately over the land and over
the sea. The actual surface pressure is used for computing the contribution to the convolution
integral over the land. However under the ocean surface is deformed due to atmospheric pressure
changes which should be taken into account. Currently, no reliable methods for evaluation of the
oceanic response were proposed. Two extreme cases are modeled: so-called inverted barometer
hypothesis which assumes that local atmospheric pressure variations are fully compensated by
sea height variations, and pressure variation at the sea floor are zero, and the non-inverted
barometer hypothesis which neglects sea height variations. However the inverted barometer
hypothesis violates sea mass conservation. Therefore, it is modified by adding a term

∆P̄o =

∫ ∫

ocean

∆P (~r ′, t) cosϕ′dλ′dϕ′

∫ ∫

ocean

cos ϕ′dλ′dϕ′
(115)

which is applied uniformly at the sea floor. This pressure term, which depends only on time
but does not depend on spatial coordinates, is used for computation of the contribution to the
convolution integral over the ocean.

Since the global pressure field used for computing convolution integrals is taken from the
time series of numerical weather models, the resulting displacements for stations of our interest
are computed in the form of time series with the time interval of numerical weather models.

The contribution to the atmospheric pressure loading displacement caused by atmospheric
tides is computed on the basis of the global model of atmospheric tides at the diurnal and
semi-diurnal frequency. The complex amplitude is convolved with Green’s function invoking the
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non-inverted barometer hypothesis in a way similar to computing displacement caused by ocean
tides.

The hydrology loading is computed in a similar way as the ocean loading: the global model
of the pressure caused by stored water in land is convolved with Green’s function. The resulting
displacements for stations of our interest are computed in the form of time series with the time
interval of hydrology models.

In addition to various mass loading, stations may have irregular displacements. These ir-
regular displacements are estimated from analysis of VLBI observations. They are presented in
the most general form: in the form of expansion over B-spline basis of an arbitrary order with
non-equidistant nodes which may be multiple.

Various models of site displacements computed externally can be applied for computation
of time delay. More than one external model can be used. Including these contributions to the
model is controlled by the following keywords:

• POSVAR FIL. This keyword specifies the file name with coefficients of external displacement
supplied in the second value. The first value specifies the model index. The model index
should be 1 for the first model, 2 for the second model, etc.

• POSVAR MOD. This keyword specifies the type of displacement model in the second value.
The first value specifies the model index. The following second values are allowed:

– TIME SERIES — the displacement model is in the form of time series which are stored
in files in BINDISP format;

– HARMONIC MODEL — the displacement model is in the form of coefficients of the har-
monic expansion. The model is stored in a file in HARPOS format.

– B SPLINE — the displacement model is in the form of coefficients of B-spline. The
model is stored in a file in BSP format.

• POSVAR INT — This keyword specifies the type of interpolation between nodes of dis-
placement time series. The first value specifies the model index. The following second
values are recognized:

– CLOSE POINT

– LINEAR

– SPLINE

• POSVAR USE — This keyword specifies the action which is be performed in the case
if no coefficients were found for a station of a baseline in the process of applying the
displacement model. The first value specifies the model If the second valued is REQUIRED,
then this situation is considered as a fatal error, and the process of computation will be
terminated. If the second valued is USE, then a warning will be printed, but the process
of computation will continue.

3.4 Computation of delay caused by propagation media. Rigorous approach.

Rigorous computation of the path delay in neutral atmosphere requires knowledge of distribution
of aid temperature, atmospheric pressure and air humidity. It was shown by L. Petrov (2010,
manuscript in preparation) that the atmosphere path delay can be computed with accuracies
of 1–3 cm at elevation angles of 20–90◦ from the output of modern numerical weather models.
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Rigorous computation of the atmosphere path delay requires voluminous input data (1Tb per
year or more) and requires significant computing resources. It is not practical to include these
computations in VTD.

Slanted path delay is computed for each station in a form of a uniform 3D series. The last
dimension of the grid is time. The time step corresponds to the time step of numerical weather
model (3 or 6 hours). The second dimension is azimuth and the first dimension is a function
of elevation mi(e). function mi(e) is the so-called “mapping function” for the ISO atmosphere:

tna(e)
tna(π/2) — the ratio of the atmosphere path delay at a given direction to the atmosphere path
delay in zenith direction computed for the reference model of the atmosphere ISO ISA at geoid
at the latitude 45◦. Function mi(e) is computed by numerical integration of equations of wave

propagation, and is represented in the form of mi(e) =
∑

CkTk((
1

sin e + α
− a)/b) where Tk(x)

is the Chebyshev polynomial of the k-th degree, a, b, α, Ck are some coefficients. The function
reciprocal to m(e), m−1(r), is represented as m−1(r) = −α + arcsin(1/

∑
DkT ((r − c)/d)).

Interpolation of the slated path delay τna(e, A, t) is performed by the following way. First,
for the range of epochs within observing session (3 epochs before the experiment start and 3
epochs after the experiment, each station the 3D array of slanted path delay for dimensions
r, A, t(r = mi(e) is extracted. Then the 3D array of B-spline coefficients that represents the
slanted path delay is computed on place and replaces the array of 3D path delay.

Finally, the slanted path delay at elevation e, azimuth A at time epoch t is computed using
these interpolation B-spline coefficients as a function (r, A, t). Coordinate r = mi(e). The
partial derivative of the slanted path delay with respect to the path delay in zenith direction

τna(e)

τna(π/2)
is computed as

τna,nh(e)

τna,nh(π/2)
, where τna,nh(e) is the contribution of the non-hydrostatic

constituent of the atmosphere on path delay.

3.4.1 Computation of path delay through the neutral atmosphere using the output

of numerical weather models.

Numerical whether models produces the 4D field of the atmospheric pressure, air tempera-
ture, specific humidity, and other parameters on a non-regular, global 4D grid. For comput-
ing path delay, the non-regular grid is replaced with the regular grid through re-gridding and
the use of curvilinear coordinate. The curvilinear coordinates H, L, P, T are related to the
Cartesian, crust-fixed coordinates x, y, z, t through the matrix of transformation Ĥ, such that

~R(H, L, P, T ) = Ĥ ~r(x, y, z, t). The coefficients of the transformation Ĥ are global and do not
depend on coordinates.

For a given station, local Cartesian coordinates ξ, η, ζ with the original ant the station
reference point are introduced, such that the direction of axis ξ is along the direction to the
emitter, as it were in the absence of the atmosphere, η is the perpendicular to ξ an lies in
the plane of ξ and the Earth pole, and ζ = ξ × ζ. It was shown by L. Petrov 2010, paper
in preparation, that exploiting the Fermat principle and solving the variational problem for
finding the trajectory through the heterogeneous atmosphere, the differential equations of wave
propagation can be written in this form:
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(116)

where U and V gather non-linear terms that can be omitted if elevations are greater than 3◦ and
the accuracy of computation 1 ps is considered sufficient. Here n is the refractivity coefficient
that is computed on the basis of the atmospheric pressure, air temperature and specific humidity
as

n = 1 + k1d

Pd

T
Z−1

d +

(

k1w
Pw

T
+ k2w

Pw

T 2

)

Z−1
w , (117)

After numerical solving differential equations (116), functions η(ξ), ζ(ξ), η′(ξ), ζ ′(ξ) become
known. Then the slanted path delay is found by integration of the refractivity index along the
curvilinear trajectory η(ξ), ζ(ξ):

τna =
1

c

∫ ∞

0



n (ξ, η, ζ)

√√√√1 +

(
dη

dξ

)2

+

(
dζ

dξ

)2

− 1



 dξ. (118)

Computation of the path delay through the neutral atmosphere is a computationally inten-
sive process are requires voluminous dataset (1Tb per year). Therefore, for practical reasons,
the slanted path delay is computed outside of VTD. The slanted path delay is computed for
each site, each time epoch of the numerical weather model by first solving differential equations
117 and then integrating the refractivity index along the trajectory at a 2D grid: azimuth and
elevation. In order to exploit efficient interpolation, the grid should be equidistant. Since the
dependence of path delay on elevation is strongly non-linear, equidistant grid over azimuth and
elevation is the not the optimal: in order to get interpolation errors below 1 ps, too many nodes
over elevation are needed. The efficiency of interpolation is significantly improved if to perform
a non-linear transformation of the grid, i.e. to present the slanted path delay on a regular grid
of arguments others than azimuth and elevation. The optimal choice is a function that repre-
sents the average path delay. Numerical experiments show that a satisfactory approximation is
achieved when when we transform arguments (A, E) −→ (A, Miso(P (E))), where A stands for
azimuth, E for elevation, and Mst(P (E)) is the mapping function computed for the refractiv-
ity index distribution determined by the ISO International Standard Atmosphere [ISO (1975)].
This function itself is represented not as a function of elevation but as a function of another,
more simple, approximation of the mapping function, namely

P (E) =
1

E (1 +
2

π
E0) − E0

, (119)

where E0 is −0.052 radians is selected in such a way that to avoid singularity even for the
ray grazing the horizon and remain normalized to 1 in zenith direction. Series of expansion
Mst(P (E)) are converging much faster than series Mst(P (E)). Function Mst(P (E)) was first
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computed by numerical integration at the range of elevations [−0.052, π
2 ] at a regular elevation

grid of size 1024. Then the series of Mst(P (E)) were expanded over Chebyshev polynomial of
the 12th degree:

Mst(P (E)) =
n=12∑

n=0

cn Tn

(
P (E) − Pb

Pe − Pb

)

M−1
st (M) =

1

1 +
2

π
E0

arcsin
1(

n=12∑

n=0

dn Tn

(
M − Mb

Me − Mb

)) ,
(120)

where Pb = −0.052, Pe =
π

2
and Mb = 1.0, Me = 46.815214 . The inverse M−1

st (M) returns

elevation angle as a function of mapping function.
Numerical values of Chebyshev polynomial coefficients of Mst(P (E)) and its inverse M−1

st (M)
are presented in table 1.

Table 1: The second column presents the coefficients of expansion of mapping function for the
International Standard Atmosphere as a function of P(E) over Chebyshev polynomials at the
range of elevations [−0.052, π

2 ]. The third column presents the coefficients of expansion of its
inverse M−1

st (M) over Chebyshev polynomials at the range [1.0, 46.815214]. The argument of the
inverse is the mapping function, and the value is elevation. The maximal error of interpolation
is 8 · 10−6.

Deg Mst(P (E)) M−1
st (M)

0 2.3496276 · 10+01 1.433399 · 10+01

1 2.3756641 · 10+01 1.255039 · 10+01

2 2.8960727 · 10−01 −1.159927 · 10−01

3 −8.8489567 · 10−01 4.812282 · 10−01

4 1.4212949 · 10−01 −1.142513 · 10−01

5 3.4080806 · 10−02 4.717299 · 10−02

6 −2.1776292 · 10−02 −1.584444 · 10−02

7 2.6966697 · 10−03 5.871918 · 10−03

8 1.3182015 · 10−03 −1.949435 · 10−03

9 −9.2308499 · 10−04 7.900266 · 10−04

10 6.8354478 · 10−05 −2.467537 · 10−04

11 1.3502649 · 10−05 9.892615 · 10−05

12 −1.7105554 · 10−05 −1.280538 · 10−04

Numerical experiments showed that the interpolation errors are below 1 ps at elevations
[3◦, 90◦] when the slanted path delay at a given station is expanded over B-spline basis at a
regular grid A, Mst(P (E)) with 12 steps over azimuth in the range of [0, 2π] and 16 steps over
Mst(P (E)) in the range of [1.0, 14.65859].

In order to interpolate slanted path delay at A, E, T (T is time), the triplet of arguments
should be transformed to A, M, T using expression 120. The 3D field of slanted path delay at a
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given station is expanded over B-spline series of the m-th degree:

τna(A, M, T ) =
l=dT∑

l=1−m

k=dM∑

k=1−m

j=dA∑

j=1−m

fijk Bm
i (A)Bm

j (M)Bm
k (T ) . (121)

Interpolation of slanted path delay and applying it to the total path delay in VTD is
controlled by keywords SLANTED PATH DELAY MODEL, SLANTED PATH DELAY BIAS FILE,
EXTERNAL DELAY DIR, EXTERNAL DELAY DIR 2ND, EXTERNAL DELAY DIR 3RD, and EX-

TERNAL DELAY DIR 4TH.
The first keyword is either NONE or SPD 3D. The latter values indicates that the 3D

slanted path delay should be read from external files and interpolated. The files with path
delay are located up to 4 directories, one file per station. VTD will look first directory EXTER-

NAL DELAY DIR, then EXTERNAL DELAY DIR 2ND, then EXTERNAL DELAY DIR 3RD, and
at lastEXTERNAL DELAY DIR 4TH. If more than one file for a given station is provided, the file
from the first directory will be picked up.

Slanted path delay can be corrected for station-dependent empirical additive offset a and
multiplicative bias b:

τna = τna−orig + aoffset + b τnhy−orig , (122)

where τnhy−orig is original non-hydrostatic component of the path delay through the neutral
atmosphere. Keyword SLANTED PATH DELAY BIAS FILE specifies the name of that file. If it
NONE, no empirical correction is made.

3.4.2 Computation of path delay through the neutral atmosphere. Regression

approach.

In the absence of rigorous computations, the path delay can be evaluated as

τatm = τhz mh(e + η cos(A) + ε sin(A)) + τnz mn(e + η cos(A) + ε sin(A)) (123)

where τhz — is the hydrostatic constituent of the path delay in the neutral atmosphere in zenith
direction, τnz — is the the non-hydrostatic constituent of the path delay the neutral atmosphere
in zenith direction, mh(e) and mn(e) are the so-called mapping functions that describe the
dependence of the atmosphere path delay on the angle between the source and the symmetry
axis of the atmosphere. e are A the elevation angle and the azimuth in vacuum, η and ε are
inclination angles of the symmetry axis in the north and east directions.

Hydrostatic constituent of the path delay in zenith direction can be computed using the at-
mospheric pressure at the level of the reference point with accuracy 2–5 ps. Other parameters of
123 cannot be predicted without detail knowledge of the atmospheric parameters profile. There-
fore, a regression expression is used. The most precise regression expression was computed using
the output of the numerical weather model GEOS–5. Regression coefficients were computed for
all 205 VLBI stations.

Computation of the hydrostatic path delay in the source direction is controlled by two op-
tions: HYDROSTATIC ZENITH DELAY and HYDROSTATIC MAPPING FUNCTION. The key-
word HYDROSTATIC ZENITH DELAY support values NONE, SAASTAMOINEN for the model of
[Saastamoinen(1972a), Saastamoinen(1972b)], or MMF for the Mean Mapping Function Model
(L. Petrov (2009), manuscript in preparation). Saastamoinien model is the best model. No
hydrostatic path delay is computed when keyword HYDROSTATIC ZENITH DELAY has value
NONE. The zenith path delay is to be multiplied by the mapping function which is defined in
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the keyword HYDROSTATIC MAPPING FUNCTION. The alternatives are NMFH for the Niell
hydrostatic mapping function and MMF for the Mean Mapping Function.

Computation of the non-hydrostatic, wet path delay in the source direction is controlled by
two options: WET ZENITH DELAY and WE MAPPING FUNCTION. The keyword WET ZENITH DELAY

support values MMF for the Mean Mapping Function Model, and NONE. In the latter case no
wet path delay is computed. The MMF is the best model. The zenith path delay is to be multi-
plied by the mapping function which is defined in the keyword WET MAPPING FUNCTION.
Alternatives are NMFW for the Niell non-hydrostatic mapping function and MMF for the Mean
Mapping Function.

Computation of path delay depends on surface meteorological parameters. In the ab-
sence of measured meteorological parameters, default values are computed on the basis of
the model specified by the keyword METEO DEF. If the value of pressure are out of range
[500 00, 110 000] Pa, all meteorological parameters, air pressure, air temperature and relative
humidity are considered missing. Three values are supported IMA, CALC and NONE. The value
IMA means if the surface meteorological parameters are missing they are computed accord-
ing to the model of the International Meteorological Association. The value CALC means that
the surface meteorological parameters are computed in the mode of compatibility with Calc:
P = 101325.0D0 · (1 − 6.5 · 10−3 · hort/293.15)5.26. The origin of the model that Calc uses
is obscure. The value NONE means that any value of pressure, temperature and relatives are
considered present, regardless whether they are out of range or not.

3.4.3 Computation of delay ionosphere path delay.

Keyword IONOSPHERIC MODEL specifies whether ionosphere path delay is to be computed.
Supported values: NONE or GNSS TEC MAP. Value GNSS TEC MAP means that ionosphere
path delay will be computed using gridded time series of TEC from analysis of global naviga-
tion satellite systems, such as GPS or GLONASS. The files with the TEC values in VIONO
format are specified by keywords IONOSPHERE DATA FILE, IONOSPHERE DATA FILE 2ND

IONOSPHERE DATA FILE 3RD, IONOSPHERE DATA FILE 4TH. Why more than one file? The
data file is supposed to present TEC at a regular grid with the same step, without gaps. The
TEC model may have different grid size and may have gaps. In that case the dataset is split
into several files, each of them presents the TEC model at a regular grid without gaps. If
more than one TEC model outputs are specified in keywords IONOSPHERE DATA FILE, IONO-

SPHERE DATA FILE 2ND IONOSPHERE DATA FILE 3RD, IONOSPHERE DATA FILE 4TH, then
it is assumed that each file covers different time span.

3.5 Partial derivatives and coupling effects.

Partial derivatives of time delay and delay rate with respect to parameters of the product of
the tilt of the symmetry axis of the atmosphere in the local topocentric coordinate system and
the zenith path delay are computed in accordance with the expression specified by the keyword
ATMOSPHERE TILT PARTIALS. The following values are supported:

• MACMILLAN 1995 — Expression according to [McMillan and Ma (1997)]:

∂τ

∂τgrad,North
= Rzd

cos A

tan E
(124)

∂τ

∂τgrad,East
= Rzd

sinA

tan E
(125)
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• TILT NMFH — Expression according to [Chen and Herring (1997)]:

∂τ

∂τgrad,North
= Rzd

cos A

tan E sinE + C
(126)

∂τ

∂τgrad,East
= Rzd

sinA

tan E sinE + C
(127)

• TILT NMFW — Expression according to [Chen and Herring (1997)]:

∂τ

∂τgrad,North
= Rzw

cos A

tan E sin E + C
(128)

∂τ

∂τgrad,East
= Rzw

sinA

tan E sin E + C
(129)

• NONE — No partial derivative with respect to parameters of the tilt to perform.

where C = 0.0031.
Computation of the coupling term between the tropospheric path delay and axis offset is

controlled by the keyword TROP AXOF COUPLING, which supports two values: YES and NONE.
Computation of the coupling term between the tropospheric path delay and the geometric delay
is controlled by the keyword TROP GEOMETRIC COUPLING, which supports two values: YES

and NONE.
Computation of delay rate using an analytical expression can be turned on or turned off in

accordance with the value of the keyword DELAY RATE: YES or NONE.
Keywords GEOM EXPR FAR ZONE, GEOM EXPR FAR ZONE, and SOURCE STRUCTURE

are reserved for future. Currently, they should have the following values:

• GEOM EXPR FAR ZONE PK2001

• GEOM EXPR FAR ZONE LIGHT TIME

• SOURCE STRUCTURE NONE

The keyword GRS METRIC specifies the scaling parameter in the metric tensor for the geo-
centric coordinate system. The following values are supported:

• ITRF2000 — The ITRF2000 metric (the same as IERS1992): Lg =
fM⊕

R̄⊕ c2 = 6.969290134 · 10−10;

• IAU2000 — The IAU2000 metric: Lg = 0;

• IERS1996 — The IERS1996 metric: Lg = − fM⊕

R̄⊕ c2 = −6.969290134 · 10−10;

3.6 Computation of path delay when one of the station is on orbit

Theory of computation of path delay when one of the station is on the orbit is given in section
2.1.2. The orbit ephemerise should be read with routine VTD READ NZO and then loaded
with routine VTD LOAD NZO. The satellite ephemeris should conform to Orbit Data Messsages
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CSSDS 502.0-B-22 standard issued by the Consultative Committee for Space Data Systems.
Computation of path delay is done with the same routine as for computation of path delay
between ground stations: VTD DELAY. Effects of tides, antenna axis offsets, loadings, delay in
the ionosphere and troposphere are not computed for the orbiting station. NB: VTD cannot
compute path delay if the orbit is not available.

In the case of a satellite that does not have a sample counter, like Radioastron, clock syn-
chronization is done implicitly at the moment of receiving the first sample of a scan. The light
time between the orbiting station and the control downlink station (which is usually different
than the ground observing station) should be computed and added to the path delay returned
by VTD DELAY. Routine VTD LT ORB makes this computation. The effective clock function
of the orbiting station that should be used in data reduction is a sum of three terms: the clock
function of the orbiting station that accounts for Hydrogen maser frequency variations, the clock
station of the downlink station, and the light time between the orbiting and downlink station.
The first (unknown) term affects all the samples. The second and third term affect only the first
sample of a scan. The second term is computed from time comparison between the Hydrogen
maser at the downlink station and the GPS clock and it is approximated by a polynomial of the
first degree.

The term that describes time dilation (expression 19) is computed by routine VTD REL ORB.
It has two time arguments: time synchronization epoch and observation epoch. NB: both
time arguments should be given at a retarded moment of time, ts. The difference td − ts is
given by routine VTD LT ORB. This difference should be subtracted from time of observation.
The result of VTD REL ORB, ∆t, is added if the orbiting station is a reference station #1 or
subtracted if the orbiting station is a remote station #2.

Reduction for clock for the ground station is made by computing a priori clock function from
Hydrogen maser comparison and the GPS clock and applying this function to every sample. For
reduction for time dilation with a continuous on-board sample counter, the first time epoch
for routine VTD REL ORB is time of clock synchronization which usually takes place prior the
observing session. For reduction for time dilation without a continuous on-board sample counter,
the first epoch of VTD REL ORB is a time coordinate at the orbiting station at the moment first
sample of a given scan, which is time of a downlink station minus light time td − ts given by
routine VTD LT ORB.

The fundamental distinction of a case when an orbiting station without a continuous on-
board sample counter from other cases that time delay and delay rate is a function of two time

arguments: nominal scan start determined by a downlink clock and time of observation. If
the orbiting station has a continuous on-board sample counter, then the first argument is time
of clock synchronization at the beginning of the experiment. Its precise value with accuracy
significantly better then the window of fringe search is irrelevant, since it will be solved for
during parameter estimation anyway.

Thus, time delay for an orbiting station is a sum of three terms: delay returned by
VTD DELAY, light time returned by VTD LT ORB, and clock dilation returned by VTD REL ORB

with an appropriate sign.
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